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I. Introduction
Statistical assessments are prominent in many kinds of legal cases, including 
antitrust, employment discrimination, toxic torts, and voting rights cases.1 This 
reference guide describes the elements of statistical reasoning. We hope the expla-
nations will help judges and lawyers to understand statistical terminology, to see 
the strengths and weaknesses of statistical arguments, and to apply relevant legal 
doctrine. The guide is organized as follows:

•	 Section I provides an overview of the field, discusses the admissibility 
of statistical studies, and offers some suggestions about procedures that 
encourage the best use of statistical evidence.

•	 Section II addresses data collection and explains why the design of a study 
is the most important determinant of its quality. This section compares 
experiments with observational studies and surveys with censuses, indicat-
ing when the various kinds of study are likely to provide useful results.

•	 Section III discusses the art of summarizing data. This section considers the 
mean, median, and standard deviation. These are basic descriptive statistics, 
and most statistical analyses use them as building blocks. This section also 
discusses patterns in data that are brought out by graphs, percentages, and 
tables.

•	 Section IV describes the logic of statistical inference, emphasizing founda-
tions and disclosing limitations. This section covers estimation, standard 
errors and confidence intervals, p-values, and hypothesis tests. 

•	 Section V shows how associations can be described by scatter diagrams, 
correlation coefficients, and regression lines. Regression is often used to 
infer causation from association. This section explains the technique, indi-
cating the circumstances under which it and other statistical models are 
likely to succeed—or fail.

•	 An appendix provides some technical details. 
•	 The glossary defines statistical terms that may be encountered in litigation.

1.  See generally Statistical Science in the Courtroom (Joseph L. Gastwirth ed., 2000); Statistics 
and the Law (Morris H. DeGroot et al. eds., 1986); National Research Council, The Evolving Role 
of Statistical Assessments as Evidence in the Courts (Stephen E. Fienberg ed., 1989) [hereinafter The 
Evolving Role of Statistical Assessments as Evidence in the Courts]; Michael O. Finkelstein & Bruce 
Levin, Statistics for Lawyers (2d ed. 2001); 1 & 2 Joseph L. Gastwirth, Statistical Reasoning in Law 
and Public Policy (1988); Hans Zeisel & David Kaye, Prove It with Figures: Empirical Methods in 
Law and Litigation (1997).
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A. Admissibility and Weight of Statistical Studies
Statistical studies suitably designed to address a material issue generally will be 
admissible under the Federal Rules of Evidence. The hearsay rule rarely is a 
serious barrier to the presentation of statistical studies, because such studies may 
be offered to explain the basis for an expert’s opinion or may be admissible under 
the learned treatise exception to the hearsay rule.2 Because most statistical methods 
relied on in court are described in textbooks or journal articles and are capable 
of producing useful results when properly applied, these methods generally satisfy 
important aspects of the “scientific knowledge” requirement in Daubert v. Merrell 
Dow Pharmaceuticals, Inc.3 Of course, a particular study may use a method that is 
entirely appropriate but that is so poorly executed that it should be inadmissible 
under Federal Rules of Evidence 403 and 702.4 Or, the method may be inappro-
priate for the problem at hand and thus lack the “fit” spoken of in Daubert.5 Or 
the study might rest on data of the type not reasonably relied on by statisticians or 
substantive experts and hence run afoul of Federal Rule of Evidence 703. Often, 
however, the battle over statistical evidence concerns weight or sufficiency rather 
than admissibility.

B. Varieties and Limits of Statistical Expertise
For convenience, the field of statistics may be divided into three subfields: prob-
ability theory, theoretical statistics, and applied statistics. Probability theory is the 
mathematical study of outcomes that are governed, at least in part, by chance. 
Theoretical statistics is about the properties of statistical procedures, including 
error rates; probability theory plays a key role in this endeavor. Applied statistics 
draws on both of these fields to develop techniques for collecting or analyzing 
particular types of data.

2.  See generally 2 McCormick on Evidence §§ 321, 324.3 (Kenneth S. Broun ed., 6th ed. 2006). 
Studies published by government agencies also may be admissible as public records. Id. § 296.

3.  509 U.S. 579, 589–90 (1993).
4.  See Kumho Tire Co. v. Carmichael, 526 U.S. 137, 152 (1999) (suggesting that the trial court 

should “make certain that an expert, whether basing testimony upon professional studies or personal 
experience, employs in the courtroom the same level of intellectual rigor that characterizes the practice 
of an expert in the relevant field.”); Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 558, 562–63 
(S.D.N.Y. 2007) (“While errors in a survey’s methodology usually go to the weight accorded to the 
conclusions rather than its admissibility, . . . ‘there will be occasions when the proffered survey is so 
flawed as to be completely unhelpful to the trier of fact.’”) (quoting AHP Subsidiary Holding Co. v. 
Stuart Hale Co., 1 F.3d 611, 618 (7th Cir.1993)).

5.  Daubert, 509 U.S. at 591; Anderson v. Westinghouse Savannah River Co., 406 F.3d 248 (4th 
Cir. 2005) (motion to exclude statistical analysis that compared black and white employees without 
adequately taking into account differences in their job titles or positions was properly granted under 
Daubert); Malletier, 525 F. Supp. 2d at 569 (excluding a consumer survey for “a lack of fit between the 
survey’s questions and the law of dilution” and errors in the execution of the survey).
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Statistical expertise is not confined to those with degrees in statistics. Because 
statistical reasoning underlies many kinds of empirical research, scholars in a 
variety of fields—including biology, economics, epidemiology, political science, 
and psychology—are exposed to statistical ideas, with an emphasis on the methods 
most important to the discipline.

Experts who specialize in using statistical methods, and whose professional 
careers demonstrate this orientation, are most likely to use appropriate procedures 
and correctly interpret the results. By contrast, forensic scientists often lack basic 
information about the studies underlying their testimony. State v. Garrison6 illus-
trates the problem. In this murder prosecution involving bite mark evidence, a 
dentist was allowed to testify that “the probability factor of two sets of teeth being 
identical in a case similar to this is, approximately, eight in one million,” even 
though “he was unaware of the formula utilized to arrive at that figure other than 
that it was ‘computerized.’”7

At the same time, the choice of which data to examine, or how best to model 
a particular process, could require subject matter expertise that a statistician lacks. 
As a result, cases involving statistical evidence frequently are (or should be) “two 
expert” cases of interlocking testimony. A labor economist, for example, may 
supply a definition of the relevant labor market from which an employer draws 
its employees; the statistical expert may then compare the race of new hires to 
the racial composition of the labor market. Naturally, the value of the statistical 
analysis depends on the substantive knowledge that informs it.8

C. Procedures That Enhance Statistical Testimony

1. Maintaining professional autonomy

Ideally, experts who conduct research in the context of litigation should proceed 
with the same objectivity that would be required in other contexts. Thus, experts 
who testify (or who supply results used in testimony) should conduct the analysis 
required to address in a professionally responsible fashion the issues posed by the 
litigation.9 Questions about the freedom of inquiry accorded to testifying experts, 

6.  585 P.2d 563 (Ariz. 1978).
7.  Id. at 566, 568. For other examples, see David H. Kaye et al., The New Wigmore: A Treatise 

on Evidence: Expert Evidence § 12.2 (2d ed. 2011).
8.  In Vuyanich v. Republic National Bank, 505 F. Supp. 224, 319 (N.D. Tex. 1980), vacated, 723 

F.2d 1195 (5th Cir. 1984), defendant’s statistical expert criticized the plaintiffs’ statistical model for an 
implicit, but restrictive, assumption about male and female salaries. The district court trying the case 
accepted the model because the plaintiffs’ expert had a “very strong guess” about the assumption, and 
her expertise included labor economics as well as statistics. Id. It is doubtful, however, that economic 
knowledge sheds much light on the assumption, and it would have been simple to perform a less 
restrictive analysis.

9.  See The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 
164 (recommending that the expert be free to consult with colleagues who have not been retained 
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as well as the scope and depth of their investigations, may reveal some of the 
limitations to the testimony.

2. Disclosing other analyses

Statisticians analyze data using a variety of methods. There is much to be said for 
looking at the data in several ways. To permit a fair evaluation of the analysis that 
is eventually settled on, however, the testifying expert can be asked to explain 
how that approach was developed. According to some commentators, counsel 
who know of analyses that do not support the client’s position should reveal them, 
rather than presenting only favorable results.10

3. Disclosing data and analytical methods before trial

The collection of data often is expensive and subject to errors and omissions. 
Moreover, careful exploration of the data can be time-consuming. To minimize 
debates at trial over the accuracy of data and the choice of analytical techniques, 
pretrial discovery procedures should be used, particularly with respect to the qual-
ity of the data and the method of analysis.11

II. How Have the Data Been Collected?
The interpretation of data often depends on understanding “study design”—the 
plan for a statistical study and its implementation.12 Different designs are suited to 
answering different questions. Also, flaws in the data can undermine any statistical 
analysis, and data quality is often determined by study design.

In many cases, statistical studies are used to show causation. Do food additives 
cause cancer? Does capital punishment deter crime? Would additional disclosures 

by any party to the litigation and that the expert receive a letter of engagement providing for these 
and other safeguards).

10.  Id. at 167; cf. William W. Schwarzer, In Defense of “Automatic Disclosure in Discovery,” 27 
Ga. L. Rev. 655, 658–59 (1993) (“[T]he lawyer owes a duty to the court to make disclosure of core 
information.”). The National Research Council also recommends that “if a party gives statistical data 
to different experts for competing analyses, that fact be disclosed to the testifying expert, if any.” The 
Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 167.

11.  See The Special Comm. on Empirical Data in Legal Decision Making, Recommendations 
on Pretrial Proceedings in Cases with Voluminous Data, reprinted in The Evolving Role of Statistical 
Assessments as Evidence in the Courts, supra note 1, app. F; see also David H. Kaye, Improving Legal 
Statistics, 24 Law & Soc’y Rev. 1255 (1990).

12.  For introductory treatments of data collection, see, for example, David Freedman et al., 
Statistics (4th ed. 2007); Darrell Huff, How to Lie with Statistics (1993); David S. Moore & William 
I. Notz, Statistics: Concepts and Controversies (6th ed. 2005); Hans Zeisel, Say It with Figures (6th 
ed. 1985); Zeisel & Kaye, supra note 1.
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in a securities prospectus cause investors to behave differently? The design of 
studies to investigate causation is the first topic of this section.13

Sample data can be used to describe a population. The population is the 
whole class of units that are of interest; the sample is the set of units chosen for 
detailed study. Inferences from the part to the whole are justified when the sample 
is representative. Sampling is the second topic of this section.

Finally, the accuracy of the data will be considered. Because making and 
recording measurements is an error-prone activity, error rates should be assessed 
and the likely impact of errors considered. Data quality is the third topic of this 
section.

A. Is the Study Designed to Investigate Causation?

1. Types of studies

When causation is the issue, anecdotal evidence can be brought to bear. So can 
observational studies or controlled experiments. Anecdotal reports may be of 
value, but they are ordinarily more helpful in generating lines of inquiry than in 
proving causation.14 Observational studies can establish that one factor is associ-

13.  See also Michael D. Green et al., Reference Guide on Epidemiology, Section V, in this 
manual; Joseph Rodricks, Reference Guide on Exposure Science, Section E, in this manual.

14.  In medicine, evidence from clinical practice can be the starting point for discovery of 
cause-and-effect relationships. For examples, see David A. Freedman, On Types of Scientific Enquiry, in 
The Oxford Handbook of Political Methodology 300 (Janet M. Box-Steffensmeier et al. eds., 2008). 
Anecdotal evidence is rarely definitive, and some courts have suggested that attempts to infer causa-
tion from anecdotal reports are inadmissible as unsound methodology under Daubert v. Merrell Dow 
Pharmaceuticals, Inc., 509 U.S. 579 (1993). See, e.g., McClain v. Metabolife Int’l, Inc., 401 F.3d 1233, 
1244 (11th Cir. 2005) (“simply because a person takes drugs and then suffers an injury does not show 
causation. Drawing such a conclusion from temporal relationships leads to the blunder of the post hoc 
ergo propter hoc fallacy.”); In re Baycol Prods. Litig., 532 F. Supp. 2d 1029, 1039–40 (D. Minn. 2007) 
(excluding a meta-analysis based on reports to the Food and Drug Administration of adverse events); 
Leblanc v. Chevron USA Inc., 513 F. Supp. 2d 641, 650 (E.D. La. 2007) (excluding plaintiffs’ experts’ 
opinions that benzene causes myelofibrosis because the causal hypothesis “that has been generated by 
case reports . . . has not been confirmed by the vast majority of epidemiologic studies of workers being 
exposed to benzene and more generally, petroleum products.”), vacated, 275 Fed. App’x. 319 (5th 
Cir. 2008) (remanding for consideration of newer government report on health effects of benzene); 
cf. Matrixx Initiatives, Inc. v. Siracusano, 131 S. Ct. 1309, 1321 (2011) (concluding that adverse event 
reports combined with other information could be of concern to a reasonable investor and therefore 
subject to a requirement of disclosure under SEC Rule 10b-5, but stating that “the mere existence of 
reports of adverse events . . . says nothing in and of itself about whether the drug is causing the adverse 
events”). Other courts are more open to “differential diagnoses” based primarily on timing. E.g., Best v. 
Lowe’s Home Ctrs., Inc., 563 F.3d 171 (6th Cir. 2009) (reversing the exclusion of a physician’s opinion 
that exposure to propenyl chloride caused a man to lose his sense of smell because of the timing in this 
one case and the physician’s inability to attribute the change to anything else); Kaye et al., supra note 
7, §§ 8.7.2 & 12.5.1. See also Matrixx Initiatives, supra, at 1322 (listing “a temporal relationship” in a 
single patient as one indication of “a reliable causal link”).
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ated with another, but work is needed to bridge the gap between association and 
causation. Randomized controlled experiments are ideally suited for demonstrat-
ing causation.

Anecdotal evidence usually amounts to reports that events of one kind are 
followed by events of another kind. Typically, the reports are not even sufficient 
to show association, because there is no comparison group. For example, some 
children who live near power lines develop leukemia. Does exposure to electrical 
and magnetic fields cause this disease? The anecdotal evidence is not compelling 
because leukemia also occurs among children without exposure.15 It is necessary 
to compare disease rates among those who are exposed and those who are not. 
If exposure causes the disease, the rate should be higher among the exposed and 
lower among the unexposed. That would be association.

The next issue is crucial: Exposed and unexposed people may differ in ways 
other than the exposure they have experienced. For example, children who live 
near power lines could come from poorer families and be more at risk from other 
environmental hazards. Such differences can create the appearance of a cause-and-
effect relationship. Other differences can mask a real relationship. Cause-and-effect 
relationships often are quite subtle, and carefully designed studies are needed to 
draw valid conclusions.

An epidemiological classic makes the point. At one time, it was thought that 
lung cancer was caused by fumes from tarring the roads, because many lung cancer 
patients lived near roads that recently had been tarred. This is anecdotal evidence. 
But the argument is incomplete. For one thing, most people—whether exposed 
to asphalt fumes or unexposed—did not develop lung cancer. A comparison of 
rates was needed. The epidemiologists found that exposed persons and unexposed 
persons suffered from lung cancer at similar rates: Tar was probably not the causal 
agent. Exposure to cigarette smoke, however, turned out to be strongly associated 
with lung cancer. This study, in combination with later ones, made a compelling 
case that smoking cigarettes is the main cause of lung cancer.16

A good study design compares outcomes for subjects who are exposed to 
some factor (the treatment group) with outcomes for other subjects who are 

15.  See National Research Council, Committee on the Possible Effects of Electromagnetic Fields 
on Biologic Systems (1997); Zeisel & Kaye, supra note 1, at 66–67. There are problems in measur-
ing exposure to electromagnetic fields, and results are inconsistent from one study to another. For 
such reasons, the epidemiological evidence for an effect on health is inconclusive. National Research 
Council, supra; Zeisel & Kaye, supra; Edward W. Campion, Power Lines, Cancer, and Fear, 337 New 
Eng. J. Med. 44 (1997) (editorial); Martha S. Linet et al., Residential Exposure to Magnetic Fields and Acute 
Lymphoblastic Leukemia in Children, 337 New Eng. J. Med. 1 (1997); Gary Taubes, Magnetic Field-Cancer 
Link: Will It Rest in Peace?, 277 Science 29 (1997) (quoting various epidemiologists).

16.  Richard Doll & A. Bradford Hill, A Study of the Aetiology of Carcinoma of the Lung, 2 Brit. 
Med. J. 1271 (1952). This was a matched case-control study. Cohort studies soon followed. See 
Green et al., supra note 13. For a review of the evidence on causation, see 38 International Agency 
for Research on Cancer (IARC), World Health Org., IARC Monographs on the Evaluation of the 
Carcinogenic Risk of Chemicals to Humans: Tobacco Smoking (1986).
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not exposed (the control group). Now there is another important distinction to 
be made—that between controlled experiments and observational studies. In a 
controlled experiment, the investigators decide which subjects will be exposed 
and which subjects will go into the control group. In observational studies, by 
contrast, the subjects themselves choose their exposures. Because of self-selection, 
the treatment and control groups are likely to differ with respect to influential 
factors other than the one of primary interest. (These other factors are called lurk-
ing variables or confounding variables.)17 With the health effects of power lines, 
family background is a possible confounder; so is exposure to other hazards. Many 
confounders have been proposed to explain the association between smoking and 
lung cancer, but careful epidemiological studies have ruled them out, one after 
the other.

Confounding remains a problem to reckon with, even for the best observa-
tional research. For example, women with herpes are more likely to develop cer-
vical cancer than other women. Some investigators concluded that herpes caused 
cancer: In other words, they thought the association was causal. Later research 
showed that the primary cause of cervical cancer was human papilloma virus 
(HPV). Herpes was a marker of sexual activity. Women who had multiple sexual 
partners were more likely to be exposed not only to herpes but also to HPV. 
The association between herpes and cervical cancer was due to other variables.18

What are “variables?” In statistics, a variable is a characteristic of units in a 
study. With a study of people, the unit of analysis is the person. Typical vari-
ables include income (dollars per year) and educational level (years of schooling 
completed): These variables describe people. With a study of school districts, the 
unit of analysis is the district. Typical variables include average family income of 
district residents and average test scores of students in the district: These variables 
describe school districts.

When investigating a cause-and-effect relationship, the variable that repre-
sents the effect is called the dependent variable, because it depends on the causes. 
The variables that represent the causes are called independent variables. With a 
study of smoking and lung cancer, the independent variable would be smoking 
(e.g., number of cigarettes per day), and the dependent variable would mark the 
presence or absence of lung cancer. Dependent variables also are called outcome 
variables or response variables. Synonyms for independent variables are risk factors, 
predictors, and explanatory variables.

17.  For example, a confounding variable may be correlated with the independent variable and 
act causally on the dependent variable. If the units being studied differ on the independent variable, 
they are also likely to differ on the confounder. The confounder—not the independent variable—could 
therefore be responsible for differences seen on the dependent variable.

18.  For additional examples and further discussion, see Freedman et al., supra note 12, at 12–28, 
150–52; David A. Freedman, From Association to Causation: Some Remarks on the History of Statistics, 14 
Stat. Sci. 243 (1999). Some studies find that herpes is a “cofactor,” which increases risk among women 
who are also exposed to HPV. Only certain strains of HPV are carcinogenic.
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2. Randomized controlled experiments

In randomized controlled experiments, investigators assign subjects to treatment 
or control groups at random. The groups are therefore likely to be comparable, 
except for the treatment. This minimizes the role of confounding. Minor imbal-
ances will remain, due to the play of random chance; the likely effect on study 
results can be assessed by statistical techniques.19 The bottom line is that causal 
inferences based on well-executed randomized experiments are generally more 
secure than inferences based on well-executed observational studies.

The following example should help bring the discussion together. Today, we 
know that taking aspirin helps prevent heart attacks. But initially, there was some 
controversy. People who take aspirin rarely have heart attacks. This is anecdotal 
evidence for a protective effect, but it proves almost nothing. After all, few people 
have frequent heart attacks, whether or not they take aspirin regularly. A good 
study compares heart attack rates for two groups: people who take aspirin (the 
treatment group) and people who do not (the controls). An observational study 
would be easy to do, but in such a study the aspirin-takers are likely to be dif-
ferent from the controls. Indeed, they are likely to be sicker—that is why they 
are taking aspirin. The study would be biased against finding a protective effect. 
Randomized experiments are harder to do, but they provide better evidence. It 
is the experiments that demonstrate a protective effect.20

In summary, data from a treatment group without a control group generally 
reveal very little and can be misleading. Comparisons are essential. If subjects are 
assigned to treatment and control groups at random, a difference in the outcomes 
between the two groups can usually be accepted, within the limits of statistical 
error (infra Section IV), as a good measure of the treatment effect. However, if 
the groups are created in any other way, differences that existed before treatment 
may contribute to differences in the outcomes or mask differences that otherwise 
would become manifest. Observational studies succeed to the extent that the treat-
ment and control groups are comparable—apart from the treatment.

3. Observational studies

The bulk of the statistical studies seen in court are observational, not experi-
mental. Take the question of whether capital punishment deters murder. To 
conduct a randomized controlled experiment, people would need to be assigned 
randomly to a treatment group or a control group. People in the treatment 
group would know they were subject to the death penalty for murder; the 

19.  Randomization of subjects to treatment or control groups puts statistical tests of significance 
on a secure footing. Freedman et al., supra note 12, at 503–22, 545–63; see infra Section IV.

20.  In other instances, experiments have banished strongly held beliefs. E.g., Scott M. Lippman 
et al., Effect of Selenium and Vitamin E on Risk of Prostate Cancer and Other Cancers: The Selenium 
and Vitamin E Cancer Prevention Trial (SELECT), 301 JAMA 39 (2009).
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controls would know that they were exempt. Conducting such an experiment 
is not possible. 

Many studies of the deterrent effect of the death penalty have been conducted, 
all observational, and some have attracted judicial attention. Researchers have cata-
logued differences in the incidence of murder in states with and without the death 
penalty and have analyzed changes in homicide rates and execution rates over the 
years. When reporting on such observational studies, investigators may speak of 
“control groups” (e.g., the states without capital punishment) or claim they are “con-
trolling for” confounding variables by statistical methods.21 However, association is 
not causation. The causal inferences that can be drawn from analysis of observational 
data—no matter how complex the statistical technique—usually rest on a foundation 
that is less secure than that provided by randomized controlled experiments.

That said, observational studies can be very useful. For example, there is strong 
observational evidence that smoking causes lung cancer (supra Section II.A.1). Gen-
erally, observational studies provide good evidence in the following circumstances:

•	 The association is seen in studies with different designs, on different kinds of 
subjects, and done by different research groups.22 That reduces the chance 
that the association is due to a defect in one type of study, a peculiarity in 
one group of subjects, or the idiosyncrasies of one research group.

•	 The association holds when effects of confounding variables are taken into 
account by appropriate methods, for example, comparing smaller groups 
that are relatively homogeneous with respect to the confounders.23

•	 There is a plausible explanation for the effect of the independent variable; 
alternative explanations in terms of confounding should be less plausible 
than the proposed causal link.24 

21.  A procedure often used to control for confounding in observational studies is regression 
analysis. The underlying logic is described infra Section V.D and in Daniel L. Rubinfeld, Reference 
Guide on Multiple Regression, Section II, in this manual. But see Richard A. Berk, Regression 
Analysis: A Constructive Critique (2004); Rethinking Social Inquiry: Diverse Tools, Shared Standards 
(Henry E. Brady & David Collier eds., 2004); David A. Freedman, Statistical Models: Theory and 
Practice (2005); David A. Freedman, Oasis or Mirage, Chance, Spring 2008, at 59.

22.  For example, case-control studies are designed one way and cohort studies another, with 
many variations. See, e.g., Leon Gordis, Epidemiology (4th ed. 2008); supra note 16.

23.  The idea is to control for the influence of a confounder by stratification—making compari-
sons separately within groups for which the confounding variable is nearly constant and therefore has 
little influence over the variables of primary interest. For example, smokers are more likely to get lung 
cancer than nonsmokers. Age, gender, social class, and region of residence are all confounders, but 
controlling for such variables does not materially change the relationship between smoking and cancer 
rates. Furthermore, many different studies—of different types and on different populations—confirm 
the causal link. That is why most experts believe that smoking causes lung cancer and many other 
diseases. For a review of the literature, see International Agency for Research on Cancer, supra note 16.

24.  A. Bradford Hill, The Environment and Disease: Association or Causation?, 58 Proc. Royal 
Soc’y Med. 295 (1965); Alfred S. Evans, Causation and Disease: A Chronological Journey 187 (1993). 
Plausibility, however, is a function of time and circumstances.
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Thus, evidence for the causal link does not depend on observed associations alone.
Observational studies can produce legitimate disagreement among experts, 

and there is no mechanical procedure for resolving such differences of opinion. 
In the end, deciding whether associations are causal typically is not a matter of 
statistics alone, but also rests on scientific judgment. There are, however, some 
basic questions to ask when appraising causal inferences based on empirical studies:

•	 Was there a control group? Unless comparisons can be made, the study 
has little to say about causation.

•	 If there was a control group, how were subjects assigned to treatment 
or control: through a process under the control of the investigator (a 
controlled experiment) or through a process outside the control of the 
investigator (an observational study)?

•	 If the study was a controlled experiment, was the assignment made using 
a chance mechanism (randomization), or did it depend on the judgment 
of the investigator?

If the data came from an observational study or a nonrandomized controlled 
experiment,

•	 How did the subjects come to be in treatment or in control groups?
 •	 Are the treatment and control groups comparable?
 •	 If not, what adjustments were made to address confounding?
 •	 Were the adjustments sensible and sufficient?25

4. Can the results be generalized?

Internal validity is about the specifics of a particular study: Threats to internal valid-
ity include confounding and chance differences between treatment and control 
groups. External validity is about using a particular study or set of studies to reach 
more general conclusions. A careful randomized controlled experiment on a large 
but unrepresentative group of subjects will have high internal validity but low 
external validity.

Any study must be conducted on certain subjects, at certain times and places, 
and using certain treatments. To extrapolate from the conditions of a study to 
more general conditions raises questions of external validity. For example, studies 
suggest that definitions of insanity given to jurors influence decisions in cases 
of incest. Would the definitions have a similar effect in cases of murder? Other 
studies indicate that recidivism rates for ex-convicts are not affected by provid-

25.  Many courts have noted the importance of confounding variables. E.g., People Who Care v. 
Rockford Bd. of Educ., 111 F.3d 528, 537–38 (7th Cir. 1997) (educational achievement); Hollander 
v. Sandoz Pharms. Corp., 289 F.3d 1193, 1213 (10th Cir. 2002) (stroke); In re Proportionality Review 
Project (II), 757 A.2d 168 (N.J. 2000) (capital sentences).
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ing them with temporary financial support after release. Would similar results be 
obtained if conditions in the labor market were different?

Confidence in the appropriateness of an extrapolation cannot come from 
the experiment itself. It comes from knowledge about outside factors that would 
or would not affect the outcome.26 Sometimes, several studies, each having dif-
ferent limitations, all point in the same direction. This is the case, for example, 
with studies indicating that jurors who approve of the death penalty are more 
likely to convict in a capital case.27 Convergent results support the validity of 
generalizations.

B. Descriptive Surveys and Censuses
We now turn to a second topic—choosing units for study. A census tries to measure 
some characteristic of every unit in a population. This is often impractical. Then 
investigators use sample surveys, which measure characteristics for only part of a 
population. The accuracy of the information collected in a census or survey depends 
on how the units are selected for study and how the measurements are made.28 

1. What method is used to select the units?

By definition, a census seeks to measure some characteristic of every unit in 
a whole population. It may fall short of this goal, in which case one must ask 

26.  Such judgments are easiest in the physical and life sciences, but even here, there are prob-
lems. For example, it may be difficult to infer human responses to substances that affect animals. First, 
there are often inconsistencies across test species: A chemical may be carcinogenic in mice but not 
in rats. Extrapolation from rodents to humans is even more problematic. Second, to get measurable 
effects in animal experiments, chemicals are administered at very high doses. Results are extrapolated—
using mathematical models—to the very low doses of concern in humans. However, there are many 
dose–response models to use and few grounds for choosing among them. Generally, different models 
produce radically different estimates of the “virtually safe dose” in humans. David A. Freedman & 
Hans Zeisel, From Mouse to Man: The Quantitative Assessment of Cancer Risks, 3 Stat. Sci. 3 (1988). 
For these reasons, many experts—and some courts in toxic tort cases—have concluded that evidence 
from animal experiments is generally insufficient by itself to establish causation. See, e.g., Bruce N. 
Ames et al., The Causes and Prevention of Cancer, 92 Proc. Nat’l Acad. Sci. USA 5258 (1995); National 
Research Council, Science and Judgment in Risk Assessment 59 (1994) (“There are reasons based 
on both biologic principles and empirical observations to support the hypothesis that many forms of 
biologic responses, including toxic responses, can be extrapolated across mammalian species, including 
Homo sapiens, but the scientific basis of such extrapolation is not established with sufficient rigor to 
allow broad and definitive generalizations to be made.”).

27.  Phoebe C. Ellsworth, Some Steps Between Attitudes and Verdicts, in Inside the Juror 42, 46 
(Reid Hastie ed., 1993). Nonetheless, in Lockhart v. McCree, 476 U.S. 162 (1986), the Supreme Court 
held that the exclusion of opponents of the death penalty in the guilt phase of a capital trial does not 
violate the constitutional requirement of an impartial jury.

28.  See Shari Seidman Diamond, Reference Guide on Survey Research, Sections III, IV, in 
this manual.
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whether the missing data are likely to differ in some systematic way from the data 
that are collected.29 The methodological framework of a scientific survey is dif-
ferent. With probability methods, a sampling frame (i.e., an explicit list of units in 
the population) must be created. Individual units then are selected by an objective, 
well-defined chance procedure, and measurements are made on the sampled units. 

To illustrate the idea of a sampling frame, suppose that a defendant in a 
criminal case seeks a change of venue: According to him, popular opinion is so 
adverse that it would be difficult to impanel an unbiased jury. To prove the state 
of popular opinion, the defendant commissions a survey. The relevant popula-
tion consists of all persons in the jurisdiction who might be called for jury duty. 
The sampling frame is the list of all potential jurors, which is maintained by court 
officials and is made available to the defendant. In this hypothetical case, the fit 
between the sampling frame and the population would be excellent.

In other situations, the sampling frame is more problematic. In an obscenity 
case, for example, the defendant can offer a survey of community standards.30 
The population comprises all adults in the legally relevant district, but obtain-
ing a full list of such people may not be possible. Suppose the survey is done by 
telephone, but cell phones are excluded from the sampling frame. (This is usual 
practice.) Suppose too that cell phone users, as a group, hold different opinions 
from landline users. In this second hypothetical, the poll is unlikely to reflect the 
opinions of the cell phone users, no matter how many individuals are sampled and 
no matter how carefully the interviewing is done.

Many surveys do not use probability methods. In commercial disputes involv-
ing trademarks or advertising, the population of all potential purchasers of a prod-
uct is hard to identify. Pollsters may resort to an easily accessible subgroup of the 
population, for example, shoppers in a mall.31 Such convenience samples may be 
biased by the interviewer’s discretion in deciding whom to approach—a form of 

29.  The U.S. Decennial Census generally does not count everyone that it should, and it counts 
some people who should not be counted. There is evidence that net undercount is greater in some 
demographic groups than others. Supplemental studies may enable statisticians to adjust for errors and 
omissions, but the adjustments rest on uncertain assumptions. See Lawrence D. Brown et al., Statistical 
Controversies in Census 2000, 39 Jurimetrics J. 347 (2007); David A. Freedman & Kenneth W. Wachter, 
Methods for Census 2000 and Statistical Adjustments, in Social Science Methodology 232 (Steven Turner 
& William Outhwaite eds., 2007) (reviewing technical issues and litigation surrounding census adjust-
ment in 1990 and 2000); 9 Stat. Sci. 458 (1994) (symposium presenting arguments for and against 
adjusting the 1990 census).

30.  On the admissibility of such polls, see State v. Midwest Pride IV, Inc., 721 N.E.2d 458 (Ohio 
Ct. App. 1998) (holding one such poll to have been properly excluded and collecting cases from 
other jurisdictions).

31.  E.g., Smith v. Wal-Mart Stores, Inc., 537 F. Supp. 2d 1302, 1333 (N.D. Ga. 2008) (treat-
ing a small mall-intercept survey as entitled to much less weight than a survey based on a probability 
sample); R.J. Reynolds Tobacco Co. v. Loew’s Theatres, Inc., 511 F. Supp. 867, 876 (S.D.N.Y. 1980) 
(questioning the propriety of basing a “nationally projectable statistical percentage” on a suburban 
mall intercept study).
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selection bias—and the refusal of some of those approached to participate—non-
response bias (infra Section II.B.2). Selection bias is acute when constituents write 
their representatives, listeners call into radio talk shows, interest groups collect 
information from their members, or attorneys choose cases for trial.32 

There are procedures that attempt to correct for selection bias. In quota sam-
pling, for example, the interviewer is instructed to interview so many women, so 
many older people, so many ethnic minorities, and the like. But quotas still leave 
discretion to the interviewers in selecting members of each demographic group 
and therefore do not solve the problem of selection bias.33

Probability methods are designed to avoid selection bias. Once the population 
is reduced to a sampling frame, the units to be measured are selected by a lottery 
that gives each unit in the sampling frame a known, nonzero probability of being 
chosen. Random numbers leave no room for selection bias.34 Such procedures 
are used to select individuals for jury duty. They also have been used to choose 
“bellwether” cases for representative trials to resolve issues in a large group of 
similar cases.35

32.  E.g., Pittsburgh Press Club v. United States, 579 F.2d 751, 759 (3d Cir. 1978) (tax-exempt 
club’s mail survey of its members to show little sponsorship of income-producing uses of facilities was 
held to be inadmissible hearsay because it “was neither objective, scientific, nor impartial”), rev’d on 
other grounds, 615 F.2d 600 (3d Cir. 1980).  Cf. In re Chevron U.S.A., Inc., 109 F.3d 1016 (5th Cir. 
1997). In that case, the district court decided to try 30 cases to resolve common issues or to ascertain 
damages in 3000 claims arising from Chevron’s allegedly improper disposal of hazardous substances. 
The court asked the opposing parties to select 15 cases each. Selecting 30 extreme cases, however, 
is quite different from drawing a random sample of 30 cases. Thus, the court of appeals wrote that 
although random sampling would have been acceptable, the trial court could not use the results in 
the 30 extreme cases to resolve issues of fact or ascertain damages in the untried cases. Id. at 1020. 
Those cases, it warned, were “not cases calculated to represent the group of 3000 claimants.” Id. See 
infra note 35.

A well-known example of selection bias is the 1936 Literary Digest poll. After successfully pre-
dicting the winner of every U.S. presidential election since 1916, the Digest used the replies from 2.4 
million respondents to predict that Alf Landon would win the popular vote, 57% to 43%. In fact, 
Franklin Roosevelt won by a landslide vote of 62% to 38%. See Freedman et al., supra note 12, at 
334–35. The Digest was so far off, in part, because it chose names from telephone books, rosters of 
clubs and associations, city directories, lists of registered voters, and mail order listings. Id. at 335, A-20 
n.6. In 1936, when only one household in four had a telephone, the people whose names appeared on 
such lists tended to be more affluent. Lists that overrepresented the affluent had worked well in earlier 
elections, when rich and poor voted along similar lines, but the bias in the sampling frame proved fatal 
when the Great Depression made economics a salient consideration for voters.

33.  See Freedman et al., supra note 12, at 337–39.
34.  In simple random sampling, units are drawn at random without replacement. In particular, 

each unit has the same probability of being chosen for the sample. Id. at 339–41. More complicated 
methods, such as stratified sampling and cluster sampling, have advantages in certain applications. In 
systematic sampling, every fifth, tenth, or hundredth (in mathematical jargon, every nth) unit in the 
sampling frame is selected. If the units are not in any special order, then systematic sampling is often 
comparable to simple random sampling.

35.  E.g., In re Simon II Litig., 211 F.R.D. 86 (E.D.N.Y. 2002), vacated, 407 F.3d 125 (2d Cir. 
2005), dismissed, 233 F.R.D. 123 (E.D.N.Y. 2006); In re Estate of Marcus Human Rights Litig., 910 
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2. Of the units selected, which are measured?

Probability sampling ensures that within the limits of chance (infra Section IV), the 
sample will be representative of the sampling frame. The question remains regard-
ing which units actually get measured. When documents are sampled for audit, 
all the selected ones can be examined, at least in principle. Human beings are less 
easily managed, and some will refuse to cooperate. Surveys should therefore report 
nonresponse rates. A large nonresponse rate warns of bias, although supplemental 
studies may establish that nonrespondents are similar to respondents with respect 
to characteristics of interest.36

In short, a good survey defines an appropriate population, uses a probability 
method for selecting the sample, has a high response rate, and gathers accurate 
information on the sample units. When these goals are met, the sample tends to 
be representative of the population. Data from the sample can be extrapolated 

F. Supp. 1460 (D. Haw. 1995), aff’d sub nom. Hilao v. Estate of Marcos, 103 F.3d 767 (9th Cir. 1996); 
Cimino v. Raymark Indus., Inc., 751 F. Supp. 649 (E.D. Tex. 1990), rev’d, 151 F.3d 297 (5th Cir. 
1998); cf. In re Chevron U.S.A., Inc., 109 F.3d 1016 (5th Cir. 1997) (discussed supra note 32). Although 
trials in a suitable random sample of cases can produce reasonable estimates of average damages, the 
propriety of precluding individual trials raises questions of due process and the right to trial by jury. See 
Thomas E. Willging, Mass Torts Problems and Proposals: A Report to the Mass Torts Working Group 
(Fed. Judicial Ctr. 1999); cf. Wal-Mart Stores, Inc. v. Dukes, 131 S. Ct. 2541, 2560–61 (2011). The 
cases and the views of commentators are described more fully in David H. Kaye & David A. Freed-
man, Statistical Proof, in 1 Modern Scientific Evidence: The Law and Science of Expert Testimony § 
6:16 (David L. Faigman et al. eds., 2009–2010).

36.  For discussions of nonresponse rates and admissibility of surveys conducted for litigation, 
see Johnson v. Big Lots Stores, Inc., 561 F. Supp. 2d 567 (E.D. La. 2008) (fair labor standards); United 
States v. Dentsply Int’l, Inc., 277 F. Supp. 2d 387, 437 (D. Del. 2003), rev’d on other grounds, 399 F.3d 
181 (3d Cir. 2005) (antitrust).

The 1936 Literary Digest election poll (supra note 32) illustrates the dangers in nonresponse. Only 
24% of the 10 million people who received questionnaires returned them. Most of the respondents 
probably had strong views on the candidates and objected to President Roosevelt’s economic program. 
This self-selection is likely to have biased the poll. Maurice C. Bryson, The Literary Digest Poll: Making 
of a Statistical Myth, 30 Am. Statistician 184 (1976); Freedman et al., supra note 12, at 335–36. Even 
when demographic characteristics of the sample match those of the population, caution is indicated. See 
David Streitfeld, Shere Hite and the Trouble with Numbers, 1 Chance 26 (1988); Chamont Wang, Sense 
and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety 174–76 (1993). 

In United States v. Gometz, 730 F.2d 475, 478 (7th Cir. 1984) (en banc), the Seventh Circuit 
recognized that “a low rate of response to juror questionnaires could lead to the underrepresentation of 
a group that is entitled to be represented on the qualified jury wheel.” Nonetheless, the court held that 
under the Jury Selection and Service Act of 1968, 28 U.S.C. §§ 1861–1878 (1988), the clerk did not 
abuse his discretion by failing to take steps to increase a response rate of 30%. According to the court, 
“Congress wanted to make it possible for all qualified persons to serve on juries, which is different 
from forcing all qualified persons to be available for jury service.” Gometz, 730 F.2d at 480. Although 
it might “be a good thing to follow up on persons who do not respond to a jury questionnaire,” the 
court concluded that Congress “was not concerned with anything so esoteric as nonresponse bias.” Id. 
at 479, 482; cf. In re United States, 426 F.3d 1 (1st Cir. 2005) (reaching the same result with respect to 
underrepresentation of African Americans resulting in part from nonresponse bias).
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to describe the characteristics of the population. Of course, surveys may be useful 
even if they fail to meet these criteria. But then, additional arguments are needed 
to justify the inferences.

C. Individual Measurements

1. Is the measurement process reliable?

Reliability and validity are two aspects of accuracy in measurement. In statistics, 
reliability refers to reproducibility of results.37 A reliable measuring instrument 
returns consistent measurements. A scale, for example, is perfectly reliable if 
it reports the same weight for the same object time and again. It may not be 
accurate—it may always report a weight that is too high or one that is too low—
but the perfectly reliable scale always reports the same weight for the same object. 
Its errors, if any, are systematic: They always point in the same direction.

Reliability can be ascertained by measuring the same quantity several times; 
the measurements must be made independently to avoid bias. Given indepen-
dence, the correlation coefficient (infra Section V.B) between repeated measure-
ments can be used as a measure of reliability. This is sometimes called a test-retest 
correlation or a reliability coefficient. 

A courtroom example is DNA identification. An early method of identifi-
cation required laboratories to determine the lengths of fragments of DNA. By 
making independent replicate measurements of the fragments, laboratories deter-
mined the likelihood that two measurements differed by specified amounts.38 Such 
results were needed to decide whether a discrepancy between a crime sample and 
a suspect sample was sufficient to exclude the suspect.39 

Coding provides another example. In many studies, descriptive information 
is obtained on the subjects. For statistical purposes, the information usually has to 
be reduced to numbers. The process of reducing information to numbers is called 
“coding,” and the reliability of the process should be evaluated. For example, in 
a study of death sentencing in Georgia, legally trained evaluators examined short 
summaries of cases and ranked them according to the defendant’s culpability.40 

37.  Courts often use “reliable” to mean “that which can be relied on” for some purpose, such 
as establishing probable cause or crediting a hearsay statement when the declarant is not produced 
for confrontation. Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579, 590 n.9 (1993), for example, 
distinguishes “evidentiary reliability” from reliability in the technical sense of giving consistent results. 
We use “reliability” to denote the latter.

38.  See National Research Council, The Evaluation of Forensic DNA Evidence 139–41 (1996).
39.  Id.; National Research Council, DNA Technology in Forensic Science 61–62 (1992). 

Current methods are discussed in David H. Kaye & George Sensabaugh, Reference Guide on DNA 
Identification Evidence, Section II, in this manual.

40.  David C. Baldus et al., Equal Justice and the Death Penalty: A Legal and Empirical Analysis 
49–50 (1990).
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Two different aspects of reliability should be considered. First, the “within-
observer variability” of judgments should be small—the same evaluator should 
rate essentially identical cases in similar ways. Second, the “between-observer 
variability” should be small—different evaluators should rate the same cases in 
essentially the same way.

2. Is the measurement process valid?

Reliability is necessary but not sufficient to ensure accuracy. In addition to reli-
ability, validity is needed. A valid measuring instrument measures what it is sup-
posed to. Thus, a polygraph measures certain physiological responses to stimuli, 
for example, in pulse rate or blood pressure. The measurements may be reliable. 
Nonetheless, the polygraph is not valid as a lie detector unless the measurements 
it makes are well correlated with lying.41

When there is an established way of measuring a variable, a new measurement 
process can be validated by comparison with the established one. Breathalyzer 
readings can be validated against alcohol levels found in blood samples. LSAT 
scores used for law school admissions can be validated against grades earned in law 
school. A common measure of validity is the correlation coefficient between the 
predictor and the criterion (e.g., test scores and later performance).42 

Employment discrimination cases illustrate some of the difficulties. Thus, 
plaintiffs suing under Title VII of the Civil Rights Act may challenge an employ-
ment test that has a disparate impact on a protected group, and defendants may 
try to justify the use of a test as valid, reliable, and a business necessity.43 For 
validation, the most appropriate criterion variable is clear enough: job perfor-
mance. However, plaintiffs may then turn around and challenge the validity 
of performance ratings. For reliability, administering the test twice to the same 
group of people may be impractical. Even if repeated testing is practical, it may be 
statistically inadvisable, because subjects may learn something from the first round 
of testing that affects their scores on the second round. Such “practice effects” are 
likely to compromise the independence of the two measurements, and indepen-
dence is needed to estimate reliability. Statisticians therefore use internal evidence 

41.  See United States v. Henderson, 409 F.3d 1293, 1303 (11th Cir. 2005) (“while the physical 
responses recorded by a polygraph machine may be tested, ‘there is no available data to prove that 
those specific responses are attributable to lying.’”); National Research Council, The Polygraph and 
Lie Detection (2003) (reviewing the scientific literature).

42.  As the discussion of the correlation coefficient indicates, infra Section V.B, the closer the 
coefficient is to 1, the greater the validity. For a review of data on test reliability and validity, see Paul 
R. Sackett et al., High-Stakes Testing in Higher Education and Employment: Appraising the Evidence for 
Validity and Fairness, 63 Am. Psychologist 215 (2008).

43.  See, e.g., Washington v. Davis, 426 U.S. 229, 252 (1976); Albemarle Paper Co. v. Moody, 
422 U.S. 405, 430–32 (1975); Griggs v. Duke Power Co., 401 U.S. 424 (1971); Lanning v. S.E. Penn. 
Transp. Auth., 308 F.3d 286 (3d Cir. 2002).
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from the test itself. For example, if scores on the first half of the test correlate well 
with scores from the second half, then that is evidence of reliability. 

A further problem is that test-takers are likely to be a select group. The ones 
who get the jobs are even more highly selected. Generally, selection attenuates 
(weakens) the correlations. There are methods for using internal measures of reli-
ability to estimate test-retest correlations; there are other methods that correct for 
attenuation. However, such methods depend on assumptions about the nature of 
the test and the procedures used to select the test-takers and are therefore open 
to challenge.44

3. Are the measurements recorded correctly?

Judging the adequacy of data collection involves an examination of the process 
by which measurements are taken. Are responses to interviews coded correctly? 
Do mistakes distort the results? How much data are missing? What was done to 
compensate for gaps in the data? These days, data are stored in computer files. 
Cross-checking the files against the original sources (e.g., paper records), at least 
on a sample basis, can be informative.

Data quality is a pervasive issue in litigation and in applied statistics more gen-
erally. A programmer moves a file from one computer to another, and half the data 
disappear. The definitions of crucial variables are lost in the sands of time. Values 
get corrupted: Social security numbers come to have eight digits instead of nine, 
and vehicle identification numbers fail the most elementary consistency checks. 
Everybody in the company, from the CEO to the rawest mailroom trainee, turns 
out to have been hired on the same day. Many of the residential customers have 
last names that indicate commercial activity (“Happy Valley Farriers”). These 
problems seem humdrum by comparison with those of reliability and validity, 
but—unless caught in time—they can be fatal to statistical arguments.45

44.  See Thad Dunning & David A. Freedman, Modeling Selection Effects, in Social Science Meth-
odology 225 (Steven Turner & William Outhwaite eds., 2007); Howard Wainer & David Thissen, 
True Score Theory: The Traditional Method, in Test Scoring 23 (David Thissen & Howard Wainer eds., 
2001).

45.  See, e.g., Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 558, 630 (S.D.N.Y. 2007) 
(coding errors contributed “to the cumulative effect of the methodological errors” that warranted 
exclusion of a consumer confusion survey); EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1304, 
1305 (N.D. Ill. 1986) (“[E]rrors in EEOC’s mechanical coding of information from applications in its 
hired and nonhired samples also make EEOC’s statistical analysis based on this data less reliable.” The 
EEOC “consistently coded prior experience in such a way that less experienced women are considered 
to have the same experience as more experienced men” and “has made so many general coding errors 
that its data base does not fairly reflect the characteristics of applicants for commission sales positions 
at Sears.”), aff’d, 839 F.2d 302 (7th Cir. 1988). But see Dalley v. Mich. Blue Cross-Blue Shield, Inc., 
612 F. Supp. 1444, 1456 (E.D. Mich. 1985) (“although plaintiffs show that there were some mistakes 
in coding, plaintiffs still fail to demonstrate that these errors were so generalized and so pervasive that 
the entire study is invalid.”).
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D. What Is Random?
In the law, a selection process sometimes is called “random,” provided that it does 
not exclude identifiable segments of the population. Statisticians use the term 
in a far more technical sense. For example, if we were to choose one person at 
random from a population, in the strict statistical sense, we would have to ensure 
that everybody in the population is chosen with exactly the same probability. 
With a randomized controlled experiment, subjects are assigned to treatment or 
control at random in the strict sense—by tossing coins, throwing dice, looking 
at tables of random numbers, or more commonly these days, by using a random 
number generator on a computer. The same rigorous definition applies to ran-
dom sampling. It is randomness in the technical sense that provides assurance of 
unbiased estimates from a randomized controlled experiment or a probability 
sample. Randomness in the technical sense also justifies calculations of standard 
errors, confidence intervals, and p-values (infra Sections IV–V). Looser definitions 
of randomness are inadequate for statistical purposes.

III. How Have the Data Been Presented?
After data have been collected, they should be presented in a way that makes 
them intelligible. Data can be summarized with a few numbers or with graphi-
cal displays. However, the wrong summary can mislead.46 Section III.A discusses 
rates or percentages and provides some cautionary examples of misleading sum-
maries, indicating the kinds of questions that might be considered when summa-
ries are presented in court. Percentages are often used to demonstrate statistical 
association, which is the topic of Section III.B. Section III.C considers graphical 
summaries of data, while Sections III.D and III.E discuss some of the basic descrip-
tive statistics that are likely to be encountered in litigation, including the mean, 
median, and standard deviation.

A. Are Rates or Percentages Properly Interpreted?

1. Have appropriate benchmarks been provided?

The selective presentation of numerical information is like quoting someone out 
of context. Is a fact that “over the past three years,” a particular index fund of 
large-cap stocks “gained a paltry 1.9% a year” indicative of poor management? 
Considering that “the average large-cap value fund has returned just 1.3% a year,” 

46.  See generally Freedman et al., supra note 12; Huff, supra note 12; Moore & Notz, supra note 
12; Zeisel, supra note 12.
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a growth rate of 1.9% is hardly an indictment.47 In this example and many others, 
it is helpful to find a benchmark that puts the figures into perspective.

2. Have the data collection procedures changed?

Changes in the process of collecting data can create problems of interpreta-
tion. Statistics on crime provide many examples. The number of petty larcenies 
reported in Chicago more than doubled one year—not because of an abrupt crime 
wave, but because a new police commissioner introduced an improved reporting 
system.48 For a time, police officials in Washington, D.C., “demonstrated” the 
success of a law-and-order campaign by valuing stolen goods at $49, just below 
the $50 threshold then used for inclusion in the Federal Bureau of Investigation’s 
Uniform Crime Reports.49 Allegations of manipulation in the reporting of crime 
from one time period to another are legion.50

Changes in data collection procedures are by no means limited to crime 
statistics. Indeed, almost all series of numbers that cover many years are affected 
by changes in definitions and collection methods. When a study includes such 
time-series data, it is useful to inquire about changes and to look for any sudden 
jumps, which may signal such changes. 

3. Are the categories appropriate?

Misleading summaries also can be produced by the choice of categories to be used 
for comparison. In Philip Morris, Inc. v. Loew’s Theatres, Inc.,51 and R.J. Reynolds 
Tobacco Co. v. Loew’s Theatres, Inc.,52 Philip Morris and R.J. Reynolds sought 
an injunction to stop the maker of Triumph low-tar cigarettes from running 
advertisements claiming that participants in a national taste test preferred Tri-
umph to other brands. Plaintiffs alleged that claims that Triumph was a “national 
taste test winner” or Triumph “beats” other brands were false and misleading. 
An exhibit introduced by the defendant contained the data shown in Table 1.53 
Only 14% + 22% = 36% of the sample preferred Triumph to Merit, whereas 

47.  Paul J. Lim, In a Downturn, Buy and Hold or Quit and Fold?, N.Y. Times, July 27, 2008.
48.  James P. Levine et al., Criminal Justice in America: Law in Action 99 (1986) (referring to 

a change from 1959 to 1960).
49.  D. Seidman & M. Couzens, Getting the Crime Rate Down: Political Pressure and Crime Report-

ing, 8 Law & Soc’y Rev. 457 (1974).
50.  Michael D. Maltz, Missing UCR Data and Divergence of the NCVS and UCR Trends, in 

Understanding Crime Statistics: Revisiting the Divergence of the NCVS and UCR 269, 280 (James 
P. Lynch & Lynn A. Addington eds., 2007) (citing newspaper reports in Boca Raton, Atlanta, New 
York, Philadelphia, Broward County (Florida), and Saint Louis); Michael Vasquez, Miami Police: FBI: 
Crime Stats Accurate, Miami Herald, May 1, 2008.

51.  511 F. Supp. 855 (S.D.N.Y. 1980).
52.  511 F. Supp. 867 (S.D.N.Y. 1980).
53.  Philip Morris, 511 F. Supp. at 866.



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

232

Table 1. Data Used by a Defendant to Refute Plaintiffs’ False Advertising Claim

	 Triumph	 Triumph	 Triumph	 Triumph	 Triumph
	 Much	 Somewhat	 About the	 Somewhat	 Much 
	 Better	 Better	 Same	 Worse	 Worse 
	 Than Merit	 Than Merit	 as Merit	 Than Merit	 Than Merit

Number	 45	 73	 77	 93	 36
Percentage	 14	 22	 24	 29	 11

29% + 11% = 40% preferred Merit to Triumph. By selectively combining catego-
ries, however, the defendant attempted to create a different impression. Because 
24% found the brands to be about the same, and 36% preferred Triumph, the 
defendant claimed that a clear majority (36% + 24% = 60%) found Triumph “as 
good [as] or better than Merit.”54 The court resisted this chicanery, finding that 
defendant’s test results did not support the advertising claims.55

There was a similar distortion in claims for the accuracy of a home pregnancy 
test. The manufacturer advertised the test as 99.5% accurate under laboratory con-
ditions. The data underlying this claim are summarized in Table 2.

Table 2 does indicate that only one error occurred in 200 assessments, or 
99.5% overall accuracy, but the table also shows that the test can make two types 
of errors: It can tell a pregnant woman that she is not pregnant (a false negative), 
and it can tell a woman who is not pregnant that she is (a false positive). The 
reported 99.5% accuracy rate conceals a crucial fact—the company had virtually 
no data with which to measure the rate of false positives.56

54.  Id. 
55.  Id. at 856–57.
56.  Only two women in the sample were not pregnant; the test gave correct results for both of 

them. Although a false-positive rate of 0 is ideal, an estimate based on a sample of only two women 
is not. These data are reported in Arnold Barnett, How Numbers Can Trick You, Tech. Rev., Oct. 
1994, at 38, 44–45.

Table 2. Home Pregnancy Test Results

	 Actually Pregnant	 Actually not Pregnant

Test says pregnant	 197	 0
Test says not pregnant	     1	 2
Total	 198	 2
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4. How big is the base of a percentage?

Rates and percentages often provide effective summaries of data, but these sta-
tistics can be misinterpreted. A percentage makes a comparison between two 
numbers: One number is the base, and the other number is compared to that base. 
Putting them on the same base (100) makes it easy to compare them. 

When the base is small, however, a small change in absolute terms can gener-
ate a large percentage gain or loss. This could lead to newspaper headlines such 
as “Increase in Thefts Alarming,” even when the total number of thefts is small.57 
Conversely, a large base will make for small percentage increases. In these situa-
tions, actual numbers may be more revealing than percentages. 

5. What comparisons are made?

Finally, there is the issue of which numbers to compare. Researchers sometimes 
choose among alternative comparisons. It may be worthwhile to ask why they 
chose the one they did. Would another comparison give a different view? A 
government agency, for example, may want to compare the amount of service 
now being given with that of earlier years—but what earlier year should be the 
baseline? If the first year of operation is used, a large percentage increase should 
be expected because of startup problems. If last year is used as the base, was it 
also part of the trend, or was it an unusually poor year? If the base year is not 
representative of other years, the percentage may not portray the trend fairly. No 
single question can be formulated to detect such distortions, but it may help to 
ask for the numbers from which the percentages were obtained; asking about the 
base can also be helpful.58

B. Is an Appropriate Measure of Association Used?
Many cases involve statistical association. Does a test for employee promotion 
have an exclusionary effect that depends on race or gender? Does the incidence 
of murder vary with the rate of executions for convicted murderers? Do consumer 
purchases of a product depend on the presence or absence of a product warning? 
This section discusses tables and percentage-based statistics that are frequently 
presented to answer such questions.59 

Percentages often are used to describe the association between two variables. 
Suppose that a university alleged to discriminate against women in admitting 

57.  Lyda Longa, Increase in Thefts Alarming, Daytona News-J. June 8, 2008 (reporting a 35% 
increase in armed robberies in Daytona Beach, Florida, in a 5-month period, but not indicating 
whether the number had gone up by 6 (from 17 to 23), by 300 (from 850 to 1150), or by some other 
amount).

58.  For assistance in coping with percentages, see Zeisel, supra note 12, at 1–24.
59.  Correlation and regression are discussed infra Section V.
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students consists of only two colleges—engineering and business. The university 
admits 350 out of 800 male applicants; by comparison, it admits only 200 out of 
600 female applicants. Such data commonly are displayed as in Table 3.60

As Table 3 indicates, 350/800 = 44% of the males are admitted, compared 
with only 200/600 = 33% of the females. One way to express the disparity is 
to subtract the two percentages: 44% – 33% = 11 percentage points. Although 
such subtraction is commonly seen in jury discrimination cases,61 the difference is 
inevitably small when the two percentages are both close to zero. If the selection 
rate for males is 5% and that for females is 1%, the difference is only 4 percentage 
points. Yet, females have only one-fifth the chance of males of being admitted, 
and that may be of real concern.

For Table 3, the selection ratio (used by the Equal Employment Opportu-
nity Commission in its “80% rule”) is 33/44 = 75%, meaning that, on average, 
women have 75% the chance of admission that men have.62 However, the selec-
tion ratio has its own problems. In the last example, if the selection rates are 5% 
and 1%, then the exclusion rates are 95% and 99%. The ratio is 99/95 = 104%, 
meaning that females have, on average, 104% the risk of males of being rejected. 
The underlying facts are the same, of course, but this formulation sounds much 
less disturbing.

60.  A table of this sort is called a “cross-tab” or a “contingency table.” Table 3 is “two-by-two” 
because it has two rows and two columns, not counting rows or columns containing totals.

61.  See, e.g., State v. Gibbs, 758 A.2d 327, 337 (Conn. 2000); Primeaux v. Dooley, 747 N.W.2d 
137, 141 (S.D. 2008); D.H. Kaye, Statistical Evidence of Discrimination in Jury Selection, in Statistical 
Methods in Discrimination Litigation 13 (David H. Kaye & Mikel Aickin eds., 1986).

62.  A procedure that selects candidates from the least successful group at a rate less than 80% of 
the rate for the most successful group “will generally be regarded by the Federal enforcement agencies 
as evidence of adverse impact.” EEOC Uniform Guidelines on Employee Selection Procedures, 29 
C.F.R. § 1607.4(D) (2008). The rule is designed to help spot instances of substantially discriminatory 
practices, and the commission usually asks employers to justify any procedures that produce selection 
ratios of 80% or less.

The analogous statistic used in epidemiology is called the relative risk. See Green et al., supra 
note 13, Section III.A. Relative risks are usually quoted as decimals; for example, a selection ratio of 
75% corresponds to a relative risk of 0.75.

Table 3. Admissions by Gender

Decision	 Male	 Female	 Total

Admit	 350	 200	   550
Deny	 450	 400	   850
Total	 800	 600	 1400
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The odds ratio is more symmetric. If 5% of male applicants are admitted, 
the odds on a man being admitted are 5/95 = 1/19; the odds on a woman being 
admitted are 1/99. The odds ratio is (1/99)/(1/19) = 19/99. The odds ratio for 
rejection instead of acceptance is the same, except that the order is reversed.63 
Although the odds ratio has desirable mathematical properties, its meaning may 
be less clear than that of the selection ratio or the simple difference.

Data showing disparate impact are generally obtained by aggregating—putting 
together—statistics from a variety of sources. Unless the source material is fairly 
homogeneous, aggregation can distort patterns in the data. We illustrate the prob-
lem with the hypothetical admission data in Table 3. Applicants can be classified 
not only by gender and admission but also by the college to which they applied, 
as in Table 4.

The entries in Table 4 add up to the entries in Table 3. Expressed in a more 
technical manner, Table 3 is obtained by aggregating the data in Table 4. Yet 
there is no association between gender and admission in either college; men and 
women are admitted at identical rates. Combining two colleges with no associa-
tion produces a university in which gender is associated strongly with admission. 
The explanation for this paradox is that the business college, to which most of the 
women applied, admits relatively few applicants. It is easier to be accepted at the 
engineering college, the college to which most of the men applied. This example 
illustrates a common issue: Association can result from combining heterogeneous 
statistical material.64 

63.  For women, the odds on rejection are 99 to 1; for men, 19 to 1. The ratio of these odds is 
99/19. Likewise, the odds ratio for an admitted applicant being a man as opposed to a denied applicant 
being a man is also 99/19.

64.  Tables 3 and 4 are hypothetical, but closely patterned on a real example. See P.J. Bickel 
et al., Sex Bias in Graduate Admissions: Data from Berkeley, 187 Science 398 (1975). The tables are an 
instance of Simpson’s Paradox.

Table 4. Admissions by Gender and College

Engineering Business

Decision Male Female Male Female

Admit 300 100  50 100

Deny 300 100 150 300
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C. Does a Graph Portray Data Fairly?
Graphs are useful for revealing key characteristics of a batch of numbers, trends 
over time, and the relationships among variables.

1. How are trends displayed?

Graphs that plot values over time are useful for seeing trends. However, the scales 
on the axes matter. In Figure 1, the rate of all crimes of domestic violence in 
Florida (per 100,000 people) appears to decline rapidly over the 10 years from 
1998 through 2007; in Figure 2, the same rate appears to drop slowly.65 The 
moral is simple: Pay attention to the markings on the axes to determine whether 
the scale is appropriate.

Figure 1 	 Figure 2

2. How are distributions displayed? 

A graph commonly used to display the distribution of data is the histogram. One 
axis denotes the numbers, and the other indicates how often those fall within 

65.  Florida Statistical Analysis Center, Florida Department of Law Enforcement, Florida’s Crime 
Rate at a Glance, available at http://www.fdle.state.fl.us/FSAC/Crime_Trends/domestic_violence/
index.asp. The data are from the Florida Uniform Crime Report statistics on crimes ranging from 
simple stalking and forcible fondling to murder and arson. The Web page with the numbers graphed 
in Figures 1 and 2 is no longer posted, but similar data for all violent crime is available at http://www.
fdle.state.fl.us/FSAC/Crime_Trends/Violent-Crime.aspx.
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specified intervals (called “bins” or “class intervals”). For example, we flipped a 
quarter 10 times in a row and counted the number of heads in this “batch” of 10 
tosses. With 50 batches, we obtained the following counts:66

7 7 5 6 8  4 2 3 6 5  4 3 4 7 4  6 8 4 7 4  7 4 5 4 3
4 4 2 5 3  5 4 2 4 4  5 7 2 3 5  4 6 4 9 10  5 5 6 6 4

The histogram is shown in Figure 3.67 A histogram shows how the data are 
distributed over the range of possible values. The spread can be made to appear 
larger or smaller, however, by changing the scale of the horizontal axis. Likewise, 
the shape can be altered somewhat by changing the size of the bins.68 It may be 
worth inquiring how the analyst chose the bin widths.

66.  The coin landed heads 7 times in the first 10 tosses; by coincidence, there were also 7 heads 
in the next 10 tosses; there were 5 heads in the third batch of 10 tosses; and so forth.

67.  In Figure 3, the bin width is 1. There were no 0s or 1s in the data, so the bars over 0 and 1 
disappear. There is a bin from 1.5 to 2.5; the four 2s in the data fall into this bin, so the bar over the 
interval from 1.5 to 2.5 has height 4. There is another bin from 2.5 to 3.5, which catches five 3s; 
the height of the corresponding bar is 5. And so forth.

All the bins in Figure 3 have the same width, so this histogram is just like a bar graph. However, 
data are often published in tables with unequal intervals. The resulting histograms will have unequal 
bin widths; bar heights should be calculated so that the areas (height × width) are proportional to the 
frequencies. In general, a histogram differs from a bar graph in that it represents frequencies by area, 
not height. See Freedman et al., supra note 12, at 31–41.

68.  As the width of the bins decreases, the graph becomes more detailed, but the appearance 
becomes more ragged until finally the graph is effectively a plot of each datum. The optimal bin width 
depends on the subject matter and the goal of the analysis.

Figure 3. �Histogram showing how frequently various numbers of heads 
appeared in 50 batches of 10 tosses of a quarter.
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D. �Is an Appropriate Measure Used for the Center of a 
Distribution?

Perhaps the most familiar descriptive statistic is the mean (or “arithmetic mean”). 
The mean can be found by adding all the numbers and dividing the total by how 
many numbers were added. By comparison, the median cuts the numbers into 
halves: half the numbers are larger than the median and half are smaller.69 Yet 
a third statistic is the mode, which is the most common number in the dataset. 
These statistics are different, although they are not always clearly distinguished.70 
The mean takes account of all the data—it involves the total of all the numbers; 
however, particularly with small datasets, a few unusually large or small observa-
tions may have too much influence on the mean. The median is resistant to such 
outliers.

Thus, studies of damage awards in tort cases find that the mean is larger than 
the median.71 This is because the mean takes into account (indeed, is heavily 
influenced by) the magnitudes of the relatively few very large awards, whereas 
the median merely counts their number. If one is seeking a single, representative 
number for the awards, the median may be more useful than the mean.72 Still, if 
the issue is whether insurers were experiencing more costs from jury verdicts, the 
mean is the more appropriate statistic: The total of the awards is directly related 
to the mean, not to the median.73

69.  Technically, at least half the numbers are at the median or larger; at least half are at the 
median or smaller. When the distribution is symmetric, the mean equals the median. The values 
diverge, however, when the distribution is asymmetric, or skewed.

70.  In ordinary language, the arithmetic mean, the median, and the mode seem to be referred to 
interchangeably as “the average.” In statistical parlance, however, the average is the arithmetic mean. 
The mode is rarely used by statisticians, because it is unstable: Small changes to the data often result 
in large changes to the mode.

71.  In a study using a probability sample of cases, the median compensatory award in wrongful 
death cases was $961,000, whereas the mean award was around $3.75 million for the 162 cases in 
which the plaintiff prevailed. Thomas H. Cohen & Steven K. Smith, U.S. Dep’t of Justice, Bureau 
of Justice Statistics Bulletin NCJ 202803, Civil Trial Cases and Verdicts in Large Counties 2001, 10 
(2004). In TXO Production Corp. v. Alliance Resources Corp., 509 U.S. 443 (1993), briefs portraying the 
punitive damage system as out of control pointed to mean punitive awards. These were some 10 times 
larger than the median awards described in briefs defending the system of punitive damages. Michael 
Rustad & Thomas Koenig, The Supreme Court and Junk Social Science: Selective Distortion in Amicus Briefs, 
72 N.C. L. Rev. 91, 145–47 (1993).

72.  In passing on proposed settlements in class-action lawsuits, courts have been advised to look 
to the magnitude of the settlements negotiated by the parties. But the mean settlement will be large 
if a higher number of meritorious, high-cost cases are resolved early in the life cycle of the litigation. 
This possibility led the court in In re Educational Testing Service Praxis Principles of Learning and Teaching, 
Grades 7-12 Litig., 447 F. Supp. 2d 612, 625 (E.D. La. 2006), to regard the smaller median settlement 
as “more representative of the value of a typical claim than the mean value” and to use this median 
in extrapolating to the entire class of pending claims.

73.  To get the total award, just multiply the mean by the number of awards; by contrast, the 
total cannot be computed from the median. (The more pertinent figure for the insurance industry is 
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Research also has shown that there is considerable stability in the ratio of 
punitive to compensatory damage awards, and the Supreme Court has placed 
great weight on this ratio in deciding whether punitive damages are excessive 
in a particular case. In Exxon Shipping Co. v. Baker,74 Exxon contended that an 
award of $2.5 billion in punitive damages for a catastrophic oil spill in Alaska was 
unreasonable under federal maritime law. The Court looked to a “comprehen-
sive study of punitive damages awarded by juries in state civil trials [that] found 
a median ratio of punitive to compensatory awards of just 0.62:1, but a mean 
ratio of 2.90:1.”75 The higher mean could reflect a relatively small but disturbing 
proportion of unjustifiably large punitive awards.76 Looking to the median ratio as 
“the line near which cases like this one largely should be grouped,” the majority 
concluded that “a 1:1 ratio, which is above the median award, is a fair upper limit 
in such maritime cases [of reckless conduct].”77

E. Is an Appropriate Measure of Variability Used?
The location of the center of a batch of numbers reveals nothing about the varia-
tions exhibited by these numbers.78 Statistical measures of variability include the 
range, the interquartile range, and the standard deviation. The range is the differ-
ence between the largest number in the batch and the smallest. The range seems 
natural, and it indicates the maximum spread in the numbers, but the range is 
unstable because it depends entirely on the most extreme values.79 The interquar-
tile range is the difference between the 25th and 75th percentiles.80 The inter-
quartile range contains 50% of the numbers and is resistant to changes in extreme 
values. The standard deviation is a sort of mean deviation from the mean.81

not the total of jury awards, but actual claims experience including settlements; of course, even the 
risk of large punitive damage awards may have considerable impact.)

74.  128 S. Ct. 2605 (2008).
75.  Id. at 2625.
76.  According to the Court, “the outlier cases subject defendants to punitive damages that 

dwarf the corresponding compensatories,” and the “stark unpredictability” of these rare awards is the 
“real problem.” Id. This perceived unpredictability has been the subject of various statistical studies 
and much debate. See Anthony J. Sebok, Punitive Damages: From Myth to Theory, 92 Iowa L. Rev. 
957 (2007).

77.  128 S. Ct. at 2633.
78.  The numbers 1, 2, 5, 8, 9 have 5 as their mean and median. So do the numbers 5, 5, 5, 

5, 5. In the first batch, the numbers vary considerably about their mean; in the second, the numbers 
do not vary at all.

79.  Moreover, the range typically depends on the number of units in the sample.
80.  By definition, 25% of the data fall below the 25th percentile, 90% fall below the 90th per-

centile, and so on. The median is the 50th percentile.
81.  When the distribution follows the normal curve, about 68% of the data will be within 1 

standard deviation of the mean, and about 95% will be within 2 standard deviations of the mean. For 
other distributions, the proportions will be different. 
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There are no hard and fast rules about which statistic is the best. In general, 
the bigger the measures of spread are, the more the numbers are dispersed.82 
Particularly in small datasets, the standard deviation can be influenced heavily by 
a few outlying values. To assess the extent of this influence, the mean and the 
standard deviation can be recomputed with the outliers discarded. Beyond this, 
any of the statistics can (and often should) be supplemented with a figure that 
displays much of the data.

IV. �What Inferences Can Be Drawn from 
the Data?

The inferences that may be drawn from a study depend on the design of the study 
and the quality of the data (supra Section II). The data might not address the issue 
of interest, might be systematically in error, or might be difficult to interpret 
because of confounding. Statisticians would group these concerns together under 
the rubric of “bias.” In this context, bias means systematic error, with no con-
notation of prejudice. We turn now to another concern, namely, the impact of 
random chance on study results (“random error”).83

If a pattern in the data is the result of chance, it is likely to wash out when 
more data are collected. By applying the laws of probability, a statistician can assess 
the likelihood that random error will create spurious patterns of certain kinds. 
Such assessments are often viewed as essential when making inferences from data. 

Technically, the standard deviation is the square root of the variance; the variance is the mean 
square deviation from the mean. For example, if the mean is 100, then 120 deviates from the mean 
by 20, and the square of 20 is 202 = 400. If the variance (i.e., the mean of the squared deviations) is 
900, then the standard deviation is the square root of 900, that is, 900 30= .  Taking the square root 
gets back to the original scale of the measurements. For example, if the measurements are of length in 
inches, the variance is in square inches; taking the square root changes back to inches.

82.  In Exxon Shipping Co. v. Baker, 554 U.S. 471 (2008), along with the mean and median ratios 
of punitive to compensatory awards of 0.62 and 2.90, the Court referred to a standard deviation of 
13.81. Id. at 498. These numbers led the Court to remark that “[e]ven to those of us unsophisticated 
in statistics, the thrust of these figures is clear: the spread is great, and the outlier cases subject defen-
dants to punitive damages that dwarf the corresponding compensatories.” Id. at 499-500. The size of 
the standard deviation compared to the mean supports the observation that ratios in the cases of jury 
award studies are dispersed. A graph of each pair of punitive and compensatory damages offers more 
insight into how scattered these figures are. See Theodore Eisenberg et al., The Predictability of Punitive 
Damages, 26 J. Legal Stud. 623 (1997); infra Section V.A (explaining scatter diagrams).

83.  Random error is also called sampling error, chance error, or statistical error. Econometricians 
use the parallel concept of random disturbance terms. See Rubinfeld, supra note 21. Randomness and 
cognate terms have precise technical meanings; it is randomness in the technical sense that justifies the 
probability calculations behind standard errors, confidence intervals, and p-values (supra Section II.D, 
infra Sections IV.A–B). For a discussion of samples and populations, see supra Section II.B.
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Thus, statistical inference typically involves tasks such as the following, which will 
be discussed in the rest of this guide.

 
•	 Estimation. A statistician draws a sample from a population (supra Sec-

tion II.B) and estimates a parameter—that is, a numerical characteristic of 
the population. (The average value of a large group of claims is a parameter 
of perennial interest.) Random error will throw the estimate off the mark. 
The question is, by how much? The precision of an estimate is usually 
reported in terms of the standard error and a confidence interval.

•	 Significance testing. A “null hypothesis” is formulated—for example, that 
a parameter takes a particular value. Because of random error, an esti-
mated value for the parameter is likely to differ from the value specified 
by the null—even if the null is right. (“Null hypothesis” is often short-
ened to “null.”) How likely is it to get a difference as large as, or larger 
than, the one observed in the data? This chance is known as a p-value. 
Small p-values argue against the null hypothesis. Statistical significance is 
determined by reference to the p-value; significance testing (also called 
hypothesis testing) is the technique for computing p-values and determin-
ing statistical significance.

•	 Developing a statistical model. Statistical inferences often depend on the valid-
ity of statistical models for the data. If the data are collected on the basis of 
a probability sample or a randomized experiment, there will be statistical 
models that suit the occasion, and inferences based on these models will be 
secure. Otherwise, calculations are generally based on analogy: This group of 
people is like a random sample; that observational study is like a randomized 
experiment. The fit between the statistical model and the data collection 
process may then require examination—how good is the analogy? If the 
model breaks down, that will bias the analysis.

•	 Computing posterior probabilities. Given the sample data, what is the prob-
ability of the null hypothesis? The question might be of direct interest to 
the courts, especially when translated into English; for example, the null 
hypothesis might be the innocence of the defendant in a criminal case. 
Posterior probabilities can be computed using a formula called Bayes’ rule. 
However, the computation often depends on prior beliefs about the statis-
tical model and its parameters; such prior beliefs almost necessarily require 
subjective judgment. According to the frequentist theory of statistics,84  

84.  The frequentist theory is also called objectivist, by contrast with the subjectivist version of 
Bayesian theory. In brief, frequentist methods treat probabilities as objective properties of the system 
being studied. Subjectivist Bayesians view probabilities as measuring subjective degrees of belief. See 
infra Section IV.D and Appendix, Section A, for discussion of the two positions. The Bayesian position 
is named after the Reverend Thomas Bayes (England, c. 1701–1761). His essay on the subject was 
published after his death: An Essay Toward Solving a Problem in the Doctrine of Chances, 53 Phil. Trans. 
Royal Soc’y London 370 (1763–1764). For discussion of the foundations and varieties of Bayesian and 
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prior probabilities rarely have meaning and neither do posterior 
probabilities.85

Key ideas of estimation and testing will be illustrated by courtroom exam-
ples, with some complications omitted for ease of presentation and some details 
postponed (see infra Section V.D on statistical models, and the Appendix on the 
calculations).

The first example, on estimation, concerns the Nixon papers. Under the Pres-
idential Recordings and Materials Preservation Act of 1974, Congress impounded 
Nixon’s presidential papers after he resigned. Nixon sued, seeking compensation 
on the theory that the materials belonged to him personally. Courts ruled in his 
favor: Nixon was entitled to the fair market value of the papers, with the amount 
to be proved at trial.86

The Nixon papers were stored in 20,000 boxes at the National Archives in 
Alexandria, Virginia. It was plainly impossible to value this entire population of 
material. Appraisers for the plaintiff therefore took a random sample of 500 boxes. 
(From this point on, details are simplified; thus, the example becomes somewhat 
hypothetical.) The appraisers determined the fair market value of each sample 
box. The average of the 500 sample values turned out to be $2000. The standard 
deviation (supra Section III.E) of the 500 sample values was $2200. Many boxes 
had low appraised values whereas some boxes were considered to be extremely 
valuable; this spread explains the large standard deviation.

A. Estimation

1. What estimator should be used?

With the Nixon papers, it is natural to use the average value of the 500 sample 
boxes to estimate the average value of all 20,000 boxes comprising the population. 

other forms of statistical inference, see, e.g., Richard M. Royall, Statistical Inference: A Likelihood 
Paradigm (1997); James Berger, The Case for Objective Bayesian Analysis, 1 Bayesian Analysis 385 (2006), 
available at http://ba.stat.cmu.edu/journal/2006/vol01/issue03/berger.pdf; Stephen E. Fienberg, Does 
It Make Sense to be an “Objective Bayesian”? (Comment on Articles by Berger and by Goldstein), 1 Bayesian 
Analysis 429 (2006); David Freedman, Some Issues in the Foundation of Statistics, 1 Found. Sci. 19 
(1995), reprinted in Topics in the Foundation of Statistics 19 (Bas C. van Fraasen ed., 1997); see also 
D.H. Kaye, What Is Bayesianism? in Probability and Inference in the Law of Evidence: The Uses and 
Limits of Bayesianism (Peter Tillers & Eric Green eds., 1988), reprinted in 28 Jurimetrics J. 161 (1988) 
(distinguishing between “Bayesian probability,” “Bayesian statistical inference,” “Bayesian inference 
writ large,” and “Bayesian decision theory”).

85.  Prior probabilities of repeatable events (but not hypotheses) can be defined within the fre-
quentist framework. See infra note 122. When this happens, prior and posterior probabilities for these 
events are meaningful according to both schools of thought.

86.  Nixon v. United States, 978 F.2d 1269 (D.C. Cir. 1992); Griffin v. United States, 935 F. 
Supp. 1 (D.D.C. 1995).
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With the average value for each box having been estimated as $2000, the plaintiff 
demanded compensation in the amount of

20,000 × $2,000 = $40,000,000.

In more complex problems, statisticians may have to choose among several 
estimators. Generally, estimators that tend to make smaller errors are preferred; 
however, “error” might be quantified in more than one way. Moreover, the 
advantage of one estimator over another may depend on features of the population 
that are largely unknown, at least before the data are collected and analyzed. For 
complicated problems, professional skill and judgment may therefore be required 
when choosing a sample design and an estimator. In such cases, the choices and 
the rationale for them should be documented.

2. What is the standard error? The confidence interval?

An estimate based on a sample is likely to be off the mark, at least by a small 
amount, because of random error. The standard error gives the likely magnitude 
of this random error, with smaller standard errors indicating better estimates.87 
In our example of the Nixon papers, the standard error for the sample aver-
age can be computed from (1) the size of the sample—500 boxes—and (2) the 
standard deviation of the sample values; see infra Appendix. Bigger samples give 
estimates that are more precise. Accordingly, the standard error should go down 
as the sample size grows, although the rate of improvement slows as the sample 
gets bigger. (“Sample size” and “the size of the sample” just mean the number 
of items in the sample; the “sample average” is the average value of the items in 
the sample.) The standard deviation of the sample comes into play by measuring 
heterogeneity. The less heterogeneity in the values, the smaller the standard error. 
For example, if all the values were about the same, a tiny sample would give an 
accurate estimate. Conversely, if the values are quite different from one another, 
a larger sample would be needed.

With a random sample of 500 boxes and a standard deviation of $2200, the 
standard error for the sample average is about $100. The plaintiff’s total demand 
was figured as the number of boxes (20,000) times the sample average ($2000). 
Therefore, the standard error for the total demand can be computed as 20,000 
times the standard error for the sample average88:

87.  We distinguish between (1) the standard deviation of the sample, which measures the spread 
in the sample data and (2) the standard error of the sample average, which measures the likely size of 
the random error in the sample average. The standard error is often called the standard deviation, and 
courts generally use the latter term. See, e.g., Castaneda v. Partida, 430 U.S. 482 (1977).

88.  We are assuming a simple random sample. Generally, the formula for the standard error must 
take into account the method used to draw the sample and the nature of the estimator. In fact, the 
Nixon appraisers used more elaborate statistical procedures. Moreover, they valued the material as of 
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20,000 × $100 = $2,000,000.

How is the standard error to be interpreted? Just by the luck of the draw, a 
few too many high-value boxes may have come into the sample, in which case 
the estimate of $40,000,000 is too high. Or, a few too many low-value boxes may 
have been drawn, in which case the estimate is too low. This is random error. 
The net effect of random error is unknown, because data are available only on 
the sample, not on the full population. However, the net effect is likely to be 
something close to the standard error of $2,000,000. Random error throws the 
estimate off, one way or the other, by something close to the standard error. The 
role of the standard error is to gauge the likely size of the random error. 

The plaintiff’s argument may be open to a variety of objections, particularly 
regarding appraisal methods. However, the sampling plan is sound, as is the 
extrapolation from the sample to the population. And there is no need for a larger 
sample: The standard error is quite small relative to the total claim.

Random errors larger in magnitude than the standard error are common-
place. Random errors larger in magnitude than two or three times the standard 
error are unusual. Confidence intervals make these ideas more precise. Usually, 
a confidence interval for the population average is centered at the sample aver-
age; the desired confidence level is obtained by adding and subtracting a suitable 
multiple of the standard error. Statisticians who say that the population average 
falls within 1 standard error of the sample average will be correct about 68% of 
the time. Those who say “within 2 standard errors” will be correct about 95% 
of the time, and those who say “within 3 standard errors” will be correct about 
99.7% of the time, and so forth. (We are assuming a large sample; the confidence 
levels correspond to areas under the normal curve and are approximations; the 
“population average” just means the average value of all the items in the popu-
lation.89) In summary,

•	 To get a 68% confidence interval, start at the sample average, then add and 
subtract 1 standard error.

•	 To get a 95% confidence interval, start at the sample average, then add and 
subtract twice the standard error.

1995, extrapolated backward to the time of taking (1974), and then added interest. The text ignores 
these complications.

89.  See infra Appendix. The area under the normal curve between –1 and +1 is close to 68.3%. 
Likewise, the area between –2 and +2 is close to 95.4%. Many academic statisticians would use 
±1.96 SE for a 95% confidence interval. However, the normal curve only gives an approximation to 
the relevant chances, and the error in that approximation will often be larger than a few tenths of a 
percent. For simplicity, we use ±1 SE for the 68% confidence level, and ±2 SE for 95% confidence. 
The normal curve gives good approximations when the sample size is reasonably large; for small 
samples, other techniques should be used. See infra notes 106–07.
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•	 To get a 99.7% confidence interval, start at the sample average, then add 
and subtract three times the standard error.

With the Nixon papers, the 68% confidence interval for plaintiff’s total 
demand runs 

from $40,000,000 - $2,000,000 = $38,000,000.
to $40,000,000 + $2,000,000 = $42,000,000.

The 95% confidence interval runs

from $40,000,000 - (2 × $2,000,000) = $36,000,000.
to $40,000,000 + (2 × $2,000,000) = $44,000,000.

The 99.7% confidence interval runs

from $40,000,000 - (3 × $2,000,000) = $34,000,000.
to $40,000,000 + (3 × $2,000,000) = $46,000,000.

To write this more compactly, we abbreviate standard error as SE. Thus, 1 
SE is one standard error, 2 SE is twice the standard error, and so forth. With a 
large sample and an estimate like the sample average, a 68% confidence interval 
is the range

estimate – 1 SE to estimate + 1 SE.

A 95% confidence interval is the range

estimate – 2 SE to estimate + 2 SE.

The 99.7% confidence interval is the range

estimate – 3 SE to estimate + 3 SE.

For a given sample size, increased confidence can be attained only by widen-
ing the interval. The 95% confidence level is the most popular, but some authors 
use 99%, and 90% is seen on occasion. (The corresponding multipliers on the SE 
are about 2, 2.6, and 1.6, respectively; see infra Appendix.) The phrase “margin of 
error” generally means twice the standard error. In medical journals, “confidence 
interval” is often abbreviated as “CI.”
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The main point is that an estimate based on a sample will differ from the exact 
population value, because of random error. The standard error gives the likely 
size of the random error. If the standard error is small, random error probably has 
little effect. If the standard error is large, the estimate may be seriously wrong. 
Confidence intervals are a technical refinement, and bias is a separate issue to 
consider (infra Section IV.A.4).

3. How big should the sample be?

There is no easy answer to this sensible question. Much depends on the level of 
error that is tolerable and the nature of the material being sampled. Generally, 
increasing the size of the sample will reduce the level of random error (“sampling 
error”). Bias (“nonsampling error”) cannot be reduced that way. Indeed, beyond 
some point, large samples are harder to manage and more vulnerable to non
sampling error. To reduce bias, the researcher must improve the design of the 
study or use a statistical model more tightly linked to the data collection process. 

If the material being sampled is heterogeneous, random error will be large; 
a larger sample will be needed to offset the heterogeneity (supra Section IV.A.1). 
A pilot sample may be useful to estimate heterogeneity and determine the final 
sample size. Probability samples require some effort in the design phase, and it 
will rarely be sensible to draw a sample with fewer than, say, two or three dozen 
items. Moreover, with such small samples, methods based on the normal curve 
(supra Section IV.A.2) will not apply.

Population size (i.e., the number of items in the population) usually has little 
bearing on the precision of estimates for the population average. This is surpris-
ing. On the other hand, population size has a direct bearing on estimated totals. 
Both points are illustrated by the Nixon papers (see supra Section IV.A.2 and infra 
Appendix). To be sure, drawing a probability sample from a large population may 

5-4 �xed image



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Guide on Statistics

247

involve a lot of work. Samples presented in the courtroom have ranged from 5 
(tiny) to 1.7 million (huge).90

4. What are the technical difficulties?

To begin with, “confidence” is a term of art. The confidence level indicates the 
percentage of the time that intervals from repeated samples would cover the true 
value. The confidence level does not express the chance that repeated estimates 
would fall into the confidence interval.91 With the Nixon papers, the 95% confi-
dence interval should not be interpreted as saying that 95% of all random samples 
will produce estimates in the range from $36 million to $44 million. Moreover, 
the confidence level does not give the probability that the unknown parameter lies 
within the confidence interval.92 For example, the 95% confidence level should 
not be translated to a 95% probability that the total value of the papers is in the 
range from $36 million to $44 million. According to the frequentist theory of 
statistics, probability statements cannot be made about population characteristics: 
Probability statements apply to the behavior of samples. That is why the different 
term “confidence” is used.

The next point to make is that for a given confidence level, a narrower 
interval indicates a more precise estimate, whereas a broader interval indicates less 

90.  See Lebrilla v. Farmers Group, Inc., No. 00-CC-017185 (Cal. Super. Ct., Orange County, 
Dec. 5, 2006) (preliminary approval of settlement), a class action lawsuit on behalf of plaintiffs who 
were insured by Farmers and had automobile accidents. Plaintiffs alleged that replacement parts rec-
ommended by Farmers did not meet specifications: Small samples were used to evaluate these allega-
tions. At the other extreme, it was proposed to adjust Census 2000 for undercount and overcount by 
reviewing a sample of 1.7 million persons. See Brown et al., supra note 29, at 353.

91.  Opinions reflecting this misinterpretation include In re Silicone Gel Breast Implants Prods. 
Liab. Litig, 318 F. Supp. 2d 879, 897 (C.D. Cal. 2004) (“a margin of error between 0.5 and 8.0 at 
the 95% confidence level . . . means that 95 times out of 100 a study of that type would yield a rela-
tive risk value somewhere between 0.5 and 8.0.”); United States ex rel. Free v. Peters, 806 F. Supp. 
705, 713 n.6 (N.D. Ill. 1992) (“A 99% confidence interval, for instance, is an indication that if we 
repeated our measurement 100 times under identical conditions, 99 times out of 100 the point estimate 
derived from the repeated experimentation will fall within the initial interval estimate. . . .”), rev’d 
in part, 12 F.3d 700 (7th Cir. 1993). The more technically correct statement in the Silicone Gel case, 
for example, would be that “the confidence interval of 0.5 to 8.0 means that the relative risk in the 
population could fall within this wide range and that in roughly 95 times out of 100, random samples 
from the same population, the confidence intervals (however wide they might be) would include the 
population value (whatever it is).”

92.  See, e.g., Freedman et al., supra note 12, at 383–86; infra Section IV.B.1. Consequently, it is 
misleading to suggest that “[a] 95% confidence interval means that there is a 95% probability that the 
‘true’ relative risk falls within the interval” or that “the probability that the true value was . . . within 
two standard deviations of the mean . . . would be 95 percent.” DeLuca v. Merrell Dow Pharms., 
Inc., 791 F. Supp. 1042, 1046 (D.N.J. 1992), aff’d, 6 F.3d 778 (3d Cir. 1993); SmithKline Beecham 
Corp. v. Apotex Corp., 247 F. Supp. 2d 1011, 1037 (N.D. Ill. 2003), aff’d on other grounds, 403 F.3d 
1331 (Fed. Cir. 2005).
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precision.93 A high confidence level with a broad interval means very little, but a 
high confidence level for a small interval is impressive, indicating that the random 
error in the sample estimate is low. For example, take a 95% confidence interval 
for a damage claim. An interval that runs from $34 million to $44 million is one 
thing, but –$10 million to $90 million is something else entirely. Statements about 
confidence without mention of an interval are practically meaningless.94

Standard errors and confidence intervals are often derived from statistical 
models for the process that generated the data. The model usually has parameters—
numerical constants describing the population from which samples were drawn. 
When the values of the parameters are not known, the statistician must work 
backward, using the sample data to make estimates. That was the case here.95 
Generally, the chances needed for statistical inference are computed from a model 
and estimated parameter values.

If the data come from a probability sample or a randomized controlled experi-
ment (supra Sections II.A–B), the statistical model may be connected tightly to 
the actual data collection process. In other situations, using the model may be 
tantamount to assuming that a sample of convenience is like a random sample, 
or that an observational study is like a randomized experiment. With the Nixon 
papers, the appraisers drew a random sample, and that justified the statistical 

93.  In Cimino v. Raymark Industries, Inc., 751 F. Supp. 649 (E.D. Tex. 1990), rev’d, 151 F.3d 297 
(5th Cir. 1998), the district court drew certain random samples from more than 6000 pending asbestos 
cases, tried these cases, and used the results to estimate the total award to be given to all plaintiffs 
in the pending cases. The court then held a hearing to determine whether the samples were large 
enough to provide accurate estimates. The court’s expert, an educational psychologist, testified that 
the estimates were accurate because the samples matched the population on such characteristics as race 
and the percentage of plaintiffs still alive. Id. at 664. However, the matches occurred only in the sense 
that population characteristics fell within 99% confidence intervals computed from the samples. The 
court thought that matches within the 99% confidence intervals proved more than matches within 95% 
intervals. Id. This is backward. To be correct in a few instances with a 99% confidence interval is not 
very impressive—by definition, such intervals are broad enough to ensure coverage 99% of the time.

94.  In Hilao v. Estate of Marcos, 103 F.3d 767 (9th Cir. 1996), for example, “an expert on sta-
tistics . . . testified that . . . a random sample of 137 claims would achieve ‘a 95% statistical probability 
that the same percentage determined to be valid among the examined claims would be applicable to 
the totality of [9541 facially valid] claims filed.’” Id. at 782. There is no 95% “statistical probability” 
that a percentage computed from a sample will be “applicable” to a population. One can compute 
a confidence interval from a random sample and be 95% confident that the interval covers some 
parameter. The computation can be done for a sample of virtually any size, with larger samples giv-
ing smaller intervals. What is missing from the opinion is a discussion of the widths of the relevant 
intervals. For the same reason, it is meaningless to testify, as an expert did in Ayyad v. Sprint Spectrum, 
L.P., No. RG03-121510 (Cal. Super. Ct., Alameda County) (transcript, May 28, 2008, at 730), that 
a simple regression equation is trustworthy because the coefficient of the explanatory variable has “an 
extremely high indication of reliability to more than 99% confidence level.”

95.  With the Nixon papers, one parameter is the average value of all 20,000 boxes, and another 
parameter is the standard deviation of the 20,000 values. These parameters can be used to approximate 
the distribution of the sample average. See infra Appendix. Regression models and their parameters are 
discussed infra Section V and in Rubinfeld, supra note 21.
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calculations—if not the appraised values themselves. In many contexts, the choice 
of an appropriate statistical model is less than obvious. When a model does not 
fit the data collection process, estimates and standard errors will not be probative.

Standard errors and confidence intervals generally ignore systematic errors 
such as selection bias or nonresponse bias (supra Sections II.B.1–2). For example, 
after reviewing studies to see whether a particular drug caused birth defects, a 
court observed that mothers of children with birth defects may be more likely to 
remember taking a drug during pregnancy than mothers with normal children. 
This selective recall would bias comparisons between samples from the two groups 
of women. The standard error for the estimated difference in drug usage between 
the groups would ignore this bias, as would the confidence interval.96

B. Significance Levels and Hypothesis Tests

1. What Is the p-value?

In 1969, Dr. Benjamin Spock came to trial in the U.S. District Court for Massa-
chusetts. The charge was conspiracy to violate the Military Service Act. The jury 
was drawn from a panel of 350 persons selected by the clerk of the court. The 
panel included only 102 women—substantially less than 50%—although a major-
ity of the eligible jurors in the community were female. The shortfall in women 
was especially poignant in this case: “Of all defendants, Dr. Spock, who had given 
wise and welcome advice on child-rearing to millions of mothers, would have 
liked women on his jury.”97 

Can the shortfall in women be explained by the mere play of random chance? 
To approach the problem, a statistician would formulate and test a null hypothesis. 
Here, the null hypothesis says that the panel is like 350 persons drawn at random 
from a large population that is 50% female. The expected number of women drawn 
would then be 50% of 350, which is 175. The observed number of women is 102. 
The shortfall is 175 - 102 = 73. How likely is it to find a disparity this large or 
larger, between observed and expected values? The probability is called p, or the 
p-value.

96.  Brock v. Merrell Dow Pharms., Inc., 874 F.2d 307, 311–12 (5th Cir.), modified, 884 F.2d 
166 (5th Cir. 1989). In Brock, the court stated that the confidence interval took account of bias (in 
the form of selective recall) as well as random error. 874 F.2d at 311–12. This is wrong. Even if the 
sampling error were nonexistent—which would be the case if one could interview every woman who 
had a child during the period that the drug was available—selective recall would produce a difference 
in the percentages of reported drug exposure between mothers of children with birth defects and those 
with normal children. In this hypothetical situation, the standard error would vanish. Therefore, the 
standard error could disclose nothing about the impact of selective recall.

97.  Hans Zeisel, Dr. Spock and the Case of the Vanishing Women Jurors, 37 U. Chi. L. Rev. 1 
(1969). Zeisel’s reasoning was different from that presented in this text. The conviction was reversed 
on appeal without reaching the issue of jury selection. United States v. Spock, 416 F.2d 165 (1st Cir. 
1965).
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The p-value is the probability of getting data as extreme as, or more extreme 
than, the actual data—given that the null hypothesis is true. In the example, p 
turns out to be essentially zero. The discrepancy between the observed and the 
expected is far too large to explain by random chance. Indeed, even if the panel 
had included 155 women, the p-value would only be around 0.02, or 2%.98 (If 
the population is more than 50% female, p will be even smaller.) In short, the jury 
panel was nothing like a random sample from the community.

Large p-values indicate that a disparity can easily be explained by the play 
of chance: The data fall within the range likely to be produced by chance varia-
tion. On the other hand, if p is very small, something other than chance must 
be involved: The data are far away from the values expected under the null 
hypothesis. Significance testing often seems to involve multiple negatives. This is 
because a statistical test is an argument by contradiction.

With the Dr. Spock example, the null hypothesis asserts that the jury panel is 
like a random sample from a population that is 50% female. The data contradict 
this null hypothesis because the disparity between what is observed and what is 
expected (according to the null) is too large to be explained as the product of ran-
dom chance. In a typical jury discrimination case, small p-values help a defendant 
appealing a conviction by showing that the jury panel is not like a random sample 
from the relevant population; large p-values hurt. In the usual employment con-
text, small p-values help plaintiffs who complain of discrimination—for example, 
by showing that a disparity in promotion rates is too large to be explained by 
chance; conversely, large p-values would be consistent with the defense argument 
that the disparity is just due to chance.

Because p is calculated by assuming that the null hypothesis is correct, p does 
not give the chance that the null is true. The p-value merely gives the chance 
of getting evidence against the null hypothesis as strong as or stronger than the 
evidence at hand. Chance affects the data, not the hypothesis. According to the 
frequency theory of statistics, there is no meaningful way to assign a numerical 
probability to the null hypothesis. The correct interpretation of the p-value can 
therefore be summarized in two lines:

p is the probability of extreme data given the null hypothesis.
p is not the probability of the null hypothesis given extreme data.99

98.  With 102 women out of 350, the p-value is about 2/1015, where 1015 is 1 followed by 
15 zeros, that is, a quadrillion. See infra Appendix for the calculations.

99.  Some opinions present a contrary view. E.g., Vasquez v. Hillery, 474 U.S. 254, 259 n.3 
(1986) (“the District Court . . . ultimately accepted . . . a probability of 2 in 1000 that the phenomenon 
was attributable to chance”); Nat’l Abortion Fed. v. Ashcroft, 330 F. Supp. 2d 436 (S.D.N.Y. 2004), 
aff’d in part, 437 F.3d 278 (2d Cir. 2006), vacated, 224 Fed. App’x. 88 (2d Cir. 2007) (“According to Dr. 
Howell, . . . a ‘P value’ of 0.30 . . . indicates that there is a thirty percent probability that the results 
of the . . . [s]tudy were merely due to chance alone.”). Such statements confuse the probability of the 
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To recapitulate the logic of significance testing: If p is small, the observed 
data are far from what is expected under the null hypothesis—too far to be readily 
explained by the operations of chance. That discredits the null hypothesis.

Computing p-values requires statistical expertise. Many methods are available, 
but only some will fit the occasion. Sometimes standard errors will be part of the 
analysis; other times they will not be. Sometimes a difference of two standard 
errors will imply a p-value of about 5%; other times it will not. In general, the 
p-value depends on the model, the size of the sample, and the sample statistics.

2. Is a difference statistically significant?

If an observed difference is in the middle of the distribution that would be 
expected under the null hypothesis, there is no surprise. The sample data are of the 
type that often would be seen when the null hypothesis is true. The difference is 
not significant, as statisticians say, and the null hypothesis cannot be rejected. On 
the other hand, if the sample difference is far from the expected value—according 
to the null hypothesis—then the sample is unusual. The difference is significant, 
and the null hypothesis is rejected. Statistical significance is determined by com-
paring p to a preset value, called the significance level.100 The null hypothesis is 
rejected when p falls below this level.

In practice, statistical analysts typically use levels of 5% and 1%.101 The 
5% level is the most common in social science, and an analyst who speaks of sig-
nificant results without specifying the threshold probably is using this figure. An 
unexplained reference to highly significant results probably means that p is less 

kind of outcome observed, which is computed under some model of chance, with the probability that 
chance is the explanation for the outcome—the “transposition fallacy.” 

Instances of the transposition fallacy in criminal cases are collected in David H. Kaye et al., The 
New Wigmore: A Treatise on Evidence: Expert Evidence §§ 12.8.2(b) & 14.1.2 (2d ed. 2011). In 
McDaniel v. Brown, 130 S. Ct. 665 (2010), for example, a DNA analyst suggested that a random match 
probability of 1/3,000,000 implied a .000033 probability that the DNA was not the source of the 
DNA found on the victim’s clothing. See David H. Kaye, “False But Highly Persuasive”: How Wrong 
Were the Probability Estimates in McDaniel v. Brown? 108 Mich. L. Rev. First Impressions 1 (2009).

100.  Statisticians use the Greek letter alpha (a) to denote the significance level; a gives the 
chance of getting a significant result, assuming that the null hypothesis is true. Thus, a represents the 
chance of a false rejection of the null hypothesis (also called a false positive, a false alarm, or a Type I 
error). For example, suppose a = 5%. If investigators do many studies, and the null hypothesis hap-
pens to be true in each case, then about 5% of the time they would obtain significant results—and 
falsely reject the null hypothesis.

101.  The Supreme Court implicitly referred to this practice in Castaneda v. Partida, 430 U.S. 
482, 496 n.17 (1977), and Hazelwood School District v. United States, 433 U.S. 299, 311 n.17 (1977). 
In these footnotes, the Court described the null hypothesis as “suspect to a social scientist” when a 
statistic from “large samples” falls more than “two or three standard deviations” from its expected value 
under the null hypothesis. Although the Court did not say so, these differences produce p-values of 
about 5% and 0.3% when the statistic is normally distributed. The Court’s standard deviation is our 
standard error.
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than 1%. These levels of 5% and 1% have become icons of science and the legal 
process. In truth, however, such levels are at best useful conventions.

Because the term “significant” is merely a label for a certain kind of p-value, 
significance is subject to the same limitations as the underlying p-value. Thus, 
significant differences may be evidence that something besides random error is at 
work. They are not evidence that this something is legally or practically impor-
tant. Statisticians distinguish between statistical and practical significance to make 
the point. When practical significance is lacking—when the size of a disparity is 
negligible—there is no reason to worry about statistical significance.102

It is easy to mistake the p-value for the probability of the null hypothesis given 
the data (supra Section IV.B.1). Likewise, if results are significant at the 5% level, 
it is tempting to conclude that the null hypothesis has only a 5% chance of being 
correct.103 This temptation should be resisted. From the frequentist perspective, 
statistical hypotheses are either true or false. Probabilities govern the samples, not 
the models and hypotheses. The significance level tells us what is likely to happen 
when the null hypothesis is correct; it does not tell us the probability that the 
hypothesis is true. Significance comes no closer to expressing the probability that 
the null hypothesis is true than does the underlying p-value.

3. Tests or interval estimates?

How can a highly significant difference be practically insignificant? The reason 
is simple: p depends not only on the magnitude of the effect, but also on the 
sample size (among other things). With a huge sample, even a tiny effect will be 

102.  E.g., Waisome v. Port Auth., 948 F.2d 1370, 1376 (2d Cir. 1991) (“though the disparity 
was found to be statistically significant, it was of limited magnitude.”); United States v. Henderson, 
409 F.3d 1293, 1306 (11th Cir. 2005) (regardless of statistical significance, excluding law enforcement 
officers from jury service does not have a large enough impact on the composition of grand juries 
to violate the Jury Selection and Service Act); cf. Thornburg v. Gingles, 478 U.S. 30, 53–54 (1986) 
(repeating the district court’s explanation of why “the correlation between the race of the voter and 
the voter’s choice of certain candidates was [not only] statistically significant,” but also “so marked 
as to be substantively significant, in the sense that the results of the individual election would have 
been different depending upon whether it had been held among only the white voters or only the 
black voters.”).

103.  E.g., Waisome, 948 F.2d at 1376 (“Social scientists consider a finding of two standard 
deviations significant, meaning there is about one chance in 20 that the explanation for a deviation 
could be random . . . .”); Adams v. Ameritech Serv., Inc., 231 F.3d 414, 424 (7th Cir. 2000) (“Two 
standard deviations is normally enough to show that it is extremely unlikely (. . . less than a 5% 
probability) that the disparity is due to chance”); Magistrini v. One Hour Martinizing Dry Cleaning, 
180 F. Supp. 2d 584, 605 n.26 (D.N.J. 2002) (a “statistically significant . . . study shows that there 
is only 5% probability that an observed association is due to chance.”); cf. Giles v. Wyeth, Inc., 500 
F. Supp. 2d 1048, 1056 (S.D. Ill. 2007) (“While [plaintiff] admits that a p-value of .15 is three times 
higher than what scientists generally consider statistically significant—that is, a p-value of .05 or 
lower—she maintains that this “represents 85% certainty, which meets any conceivable concept of 
preponderance of the evidence.”).
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highly significant.104 For example, suppose that a company hires 52% of male job 
applicants and 49% of female applicants. With a large enough sample, a statisti-
cian could compute an impressively small p-value. This p-value would confirm 
that the difference does not result from chance, but it would not convert a trivial 
difference (52% versus 49% ) into a substantial one.105 In short, the p-value does 
not measure the strength or importance of an association.

A “significant” effect can be small. Conversely, an effect that is “not signifi-
cant” can be large. By inquiring into the magnitude of an effect, courts can avoid 
being misled by p-values. To focus attention on more substantive concerns—the 
size of the effect and the precision of the statistical analysis—interval estimates 
(e.g., confidence intervals) may be more valuable than tests. Seeing a plausible 
range of values for the quantity of interest helps describe the statistical uncertainty 
in the estimate.

4. Is the sample statistically significant?

Many a sample has been praised for its statistical significance or blamed for its lack 
thereof. Technically, this makes little sense. Statistical significance is about the 
difference between observations and expectations. Significance therefore applies 
to statistics computed from the sample, but not to the sample itself, and certainly 
not to the size of the sample. Findings can be statistically significant. Differences 
can be statistically significant (supra Section IV.B.2). Estimates can be statistically 
significant (infra Section V.D.2). By contrast, samples can be representative or 
unrepresentative. They can be chosen well or badly (supra Section II.B.1). They 
can be large enough to give reliable results or too small to bother with (supra 
Section IV.A.3). But samples cannot be “statistically significant,” if this technical 
phrase is to be used as statisticians use it.

C. Evaluating Hypothesis Tests

1. What is the power of the test?

When a p-value is high, findings are not significant, and the null hypothesis is not 
rejected. This could happen for at least two reasons:

104.  See supra Section IV.B.2. Although some opinions seem to equate small p-values with 
“gross” or “substantial” disparities, most courts recognize the need to decide whether the underlying 
sample statistics reveal that a disparity is large. E.g., Washington v. People, 186 P.3d 594 (Colo. 2008) 
(jury selection).

105.  Cf. Frazier v. Garrison Indep. Sch. Dist., 980 F.2d 1514, 1526 (5th Cir. 1993) (rejecting 
claims of intentional discrimination in the use of a teacher competency examination that resulted in 
retention rates exceeding 95% for all groups); Washington, 186 P.2d 594 (although a jury selection 
practice that reduced the representation of “African-Americans [from] 7.7 percent of the population 
[to] 7.4 percent of the county’s jury panels produced a highly statistically significant disparity, the small 
degree of exclusion was not constitutionally significant.”).
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1.	 The null hypothesis is true.
2.	 The null is false—but, by chance, the data happened to be of the kind 

expected under the null.

If the power of a statistical study is low, the second explanation may be plau-
sible. Power is the chance that a statistical test will declare an effect when there 
is an effect to be declared.106 This chance depends on the size of the effect and 
the size of the sample. Discerning subtle differences requires large samples; small 
samples may fail to detect substantial differences.

When a study with low power fails to show a significant effect, the results 
may therefore be more fairly described as inconclusive than negative. The proof 
is weak because power is low. On the other hand, when studies have a good 
chance of detecting a meaningful association, failure to obtain significance can be 
persuasive evidence that there is nothing much to be found.107

2. What about small samples?

For simplicity, the examples of statistical inference discussed here (supra Sec-
tions IV.A–B) were based on large samples. Small samples also can provide useful 

106.  More precisely, power is the probability of rejecting the null hypothesis when the alterna-
tive hypothesis (infra Section IV.C.5) is right. Typically, this probability will depend on the values of 
unknown parameters, as well as the preset significance level α. The power can be computed for any 
value of α and any choice of parameters satisfying the alternative hypothesis. See infra Appendix for 
an example. Frequentist hypothesis testing keeps the risk of a false positive to a specified level (such 
as α = 5%) and then tries to maximize power. 

Statisticians usually denote power by the Greek letter beta (β). However, some authors use β to 
denote the probability of accepting the null hypothesis when the alternative hypothesis is true; this usage 
is fairly standard in epidemiology. Accepting the null hypothesis when the alternative holds true is a 
false negative (also called a Type II error, a missed signal, or a false acceptance of the null hypothesis). 

The chance of a false negative may be computed from the power. Some commentators have 
claimed that the cutoff for significance should be chosen to equalize the chance of a false positive and 
a false negative, on the ground that this criterion corresponds to the more-probable-than-not burden 
of proof. The argument is fallacious, because a and b do not give the probabilities of the null and 
alternative hypotheses; see supra Sections IV.B.1–2; supra note 34. See also D.H. Kaye, Hypothesis Testing 
in the Courtroom, in Contributions to the Theory and Application of Statistics: A Volume in Honor of 
Herbert Solomon 331, 341–43 (Alan E. Gelfand ed., 1987).

107.  Some formal procedures (meta-analysis) are available to aggregate results across studies. 
See, e.g., In re Bextra and Celebrex Marketing Sales Practices and Prod. Liab. Litig., 524 F. Supp. 
2d 1166, 1174, 1184 (N.D. Cal. 2007) (holding that “[a] meta-analysis of all available published and 
unpublished randomized clinical trials” of certain pain-relief medicine was admissible). In principle, 
the power of the collective results will be greater than the power of each study. However, these 
procedures have their own weakness. See, e.g., Richard A. Berk & David A. Freedman, Statistical 
Assumptions as Empirical Commitments, in Punishment and Social Control: Essays in Honor of Sheldon 
Messinger 235, 244–48 (T.G. Blomberg & S. Cohen eds., 2d ed. 2003); Michael Oakes, Statistical 
Inference: A Commentary for the Social and Behavioral Sciences (1986); Diana B. Petitti, Meta-
Analysis, Decision Analysis, and Cost-Effectiveness Analysis Methods for Quantitative Synthesis in 
Medicine (2d ed. 2000).
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information. Indeed, when confidence intervals and p-values can be computed, 
the interpretation is the same with small samples as with large ones.108 The con-
cern with small samples is not that they are beyond the ken of statistical theory, 
but that

1 	The underlying assumptions are hard to validate.
2.	 Because approximations based on the normal curve generally cannot be 

used, confidence intervals may be difficult to compute for parameters of 
interest. Likewise, p-values may be difficult to compute for hypotheses 
of interest.109

3.	 Small samples may be unreliable, with large standard errors, broad confi-
dence intervals, and tests having low power.

3. One tail or two?

In many cases, a statistical test can be done either one-tailed or two-tailed; the 
second method often produces a p-value twice as big as the first method. The 
methods are easily explained with a hypothetical example. Suppose we toss a coin 
1000 times and get 532 heads. The null hypothesis to be tested asserts that the 
coin is fair. If the null is correct, the chance of getting 532 or more heads is 2.3%. 
That is a one-tailed test, whose p-value is 2.3%. To make a two-tailed test, the 
statistician computes the chance of getting 532 or more heads—or 500 - 32 = 468 
heads or fewer. This is 4.6%. In other words, the two-tailed p-value is 4.6%. 
Because small p-values are evidence against the null hypothesis, the one-tailed test 
seems to produce stronger evidence than its two-tailed counterpart. However, 
the advantage is largely illusory, as the example suggests. (The two-tailed test may 
seem artificial, but it offers some protection against possible artifacts resulting from 
multiple testing—the topic of the next section.)

Some courts and commentators have argued for one or the other type of test, 
but a rigid rule is not required if significance levels are used as guidelines rather 
than as mechanical rules for statistical proof.110 One-tailed tests often make it 

108.  Advocates sometimes contend that samples are “too small to allow for meaningful statistical 
analysis,” United States v. New York City Bd. of Educ., 487 F. Supp. 2d 220, 229 (E.D.N.Y. 2007), 
and courts often look to the size of samples from earlier cases to determine whether the sample data 
before them are admissible or convincing. Id. at 230; Timmerman v. U.S. Bank, 483 F.3d 1106, 1116 
n.4 (10th Cir. 2007). However, a meaningful statistical analysis yielding a significant result can be based 
on a small sample, and reliability does not depend on sample size alone (see supra Section IV.A.3, infra 
Section V.C.1). Well-known small-sample techniques include the sign test and Fisher’s exact test. 
E.g., Michael O. Finkelstein & Bruce Levin, Statistics for Lawyers 154–56, 339–41 (2d ed. 2001); see 
generally E.L. Lehmann & H.J.M. d’Abrera, Nonparametrics (2d ed. 2006).

109.  With large samples, approximate inferences (e.g., based on the central limit theorem, see 
infra Appendix) may be quite adequate. These approximations will not be satisfactory for small samples.

110.  See, e.g., United States v. State of Delaware, 93 Fair Empl. Prac. Cas. (BNA) 1248, 2004 
WL 609331, *10 n.4 (D. Del. 2004). According to formal statistical theory, the choice between one 



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

256

easier to reach a threshold such as 5%, at least in terms of appearance. However, 
if we recognize that 5% is not a magic line, then the choice between one tail 
and two is less important—as long as the choice and its effect on the p-value are 
made explicit.

4. How many tests have been done?

Repeated testing complicates the interpretation of significance levels. If enough 
comparisons are made, random error almost guarantees that some will yield “sig-
nificant” findings, even when there is no real effect. To illustrate the point, con-
sider the problem of deciding whether a coin is biased. The probability that a fair 
coin will produce 10 heads when tossed 10 times is (1/2)10 = 1/1024. Observing 
10 heads in the first 10 tosses, therefore, would be strong evidence that the coin 
is biased. Nonetheless, if a fair coin is tossed a few thousand times, it is likely that 
at least one string of ten consecutive heads will appear. Ten heads in the first ten 
tosses means one thing; a run of ten heads somewhere along the way to a few 
thousand tosses of a coin means quite another. A test—looking for a run of ten 
heads—can be repeated too often.

Artifacts from multiple testing are commonplace. Because research that fails to 
uncover significance often is not published, reviews of the literature may produce 
an unduly large number of studies finding statistical significance.111 Even a single 
researcher may examine so many different relationships that a few will achieve 
statistical significance by mere happenstance. Almost any large dataset—even pages 
from a table of random digits—will contain some unusual pattern that can be 
uncovered by diligent search. Having detected the pattern, the analyst can perform 
a statistical test for it, blandly ignoring the search effort. Statistical significance is 
bound to follow.

There are statistical methods for dealing with multiple looks at the data, 
which permit the calculation of meaningful p-values in certain cases.112 However, 
no general solution is available, and the existing methods would be of little help 
in the typical case where analysts have tested and rejected a variety of models 
before arriving at the one considered the most satisfactory (see infra Section V on 
regression models). In these situations, courts should not be overly impressed with 

tail or two can sometimes be made by considering the exact form of the alternative hypothesis (infra 
Section IV.C.5).  But see Freedman et al., supra note 12, at 547–50. One-tailed tests at the 5% level 
are viewed as weak evidence—no weaker standard is commonly used in the technical literature. 
One-tailed tests are also called one-sided (with no pejorative intent); two-tailed tests are two-sided.

111.  E.g., Philippa J. Easterbrook et al., Publication Bias in Clinical Research, 337 Lancet 867 
(1991); John P.A. Ioannidis, Effect of the Statistical Significance of Results on the Time to Completion and 
Publication of Randomized Efficacy Trials, 279 JAMA 281 (1998); Stuart J. Pocock et al., Statistical Problems 
in the Reporting of Clinical Trials: A Survey of Three Medical Journals, 317 New Eng. J. Med. 426 (1987).

112.  See, e.g., Sandrine Dudoit & Mark J. van der Laan, Multiple Testing Procedures with 
Applications to Genomics (2008).
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claims that estimates are significant. Instead, they should be asking how analysts 
developed their models.113

5. What are the rival hypotheses?

The p-value of a statistical test is computed on the basis of a model for the data: 
the null hypothesis. Usually, the test is made in order to argue for the alternative 
hypothesis: another model. However, on closer examination, both models may 
prove to be unreasonable. A small p-value means something is going on besides 
random error. The alternative hypothesis should be viewed as one possible expla-
nation, out of many, for the data.

In Mapes Casino, Inc. v. Maryland Casualty Co.,114 the court recognized the 
importance of explanations that the proponent of the statistical evidence had failed 
to consider. In this action to collect on an insurance policy, Mapes sought to quan-
tify its loss from theft. It argued that employees were using an intermediary to cash 
in chips at other casinos. The casino established that over an 18-month period, 
the win percentage at its craps tables was 6%, compared to an expected value of 
20%. The statistics proved that something was wrong at the craps tables—the dis-
crepancy was too big to explain as the product of random chance. But the court 
was not convinced by plaintiff’s alternative hypothesis. The court pointed to other 
possible explanations (Runyonesque activities such as skimming, scamming, and 
crossroading) that might have accounted for the discrepancy without implicating 
the suspect employees.115 In short, rejection of the null hypothesis does not leave 
the proffered alternative hypothesis as the only viable explanation for the data.116

113.  Intuition may suggest that the more variables included in the model, the better. However, 
this idea often turns out to be wrong. Complex models may reflect only accidental features of the data. 
Standard statistical tests offer little protection against this possibility when the analyst has tried a variety 
of models before settling on the final specification. See authorities cited, supra note 21.

114.  290 F. Supp. 186 (D. Nev. 1968).
115.  Id. at 193. Skimming consists of “taking off the top before counting the drop,” scamming 

is “cheating by collusion between dealer and player,” and crossroading involves “professional cheaters 
among the players.” Id. In plainer language, the court seems to have ruled that the casino itself might 
be cheating, or there could have been cheaters other than the particular employees identified in the 
case. At the least, plaintiff’s statistical evidence did not rule out such possibilities. Compare EEOC v. 
Sears, Roebuck & Co., 839 F.2d 302, 312 & n.9, 313 (7th Cir. 1988) (EEOC’s regression studies 
showing significant differences did not establish liability because surveys and testimony supported the 
rival hypothesis that women generally had less interest in commission sales positions), with EEOC v. 
General Tel. Co., 885 F.2d 575 (9th Cir. 1989) (unsubstantiated rival hypothesis of “lack of interest” 
in “nontraditional” jobs insufficient to rebut prima facie case of gender discrimination); cf. supra Sec-
tion II.A (problem of confounding).

116.  E.g., Coleman v. Quaker Oats Co., 232 F.3d 1271, 1283 (9th Cir. 2000) (a disparity with 
a p-value of “3 in 100 billion” did not demonstrate age discrimination because “Quaker never con-
tends that the disparity occurred by chance, just that it did not occur for discriminatory reasons. When 
other pertinent variables were factored in, the statistical disparity diminished and finally disappeared.”).
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D. Posterior Probabilities
Standard errors, p-values, and significance tests are common techniques for assess-
ing random error. These procedures rely on sample data and are justified in terms 
of the operating characteristics of statistical procedures.117 However, frequentist 
statisticians generally will not compute the probability that a particular hypothesis 
is correct, given the data.118 For example, a frequentist may postulate that a coin is 
fair: There is a 50-50 chance of landing heads, and successive tosses are indepen-
dent. This is viewed as an empirical statement—potentially falsifiable—about the 
coin. It is easy to calculate the chance that a fair coin will turn up heads in the next 
10 tosses: The answer (see supra Section IV.C.4) is 1/1024. Therefore, observing 
10 heads in a row brings into serious doubt the initial hypothesis of fairness.

But what of the converse probability: If the coin does land heads 10 times, 
what is the chance that it is fair?119 To compute such converse probabilities, it is 
necessary to postulate initial probabilities that the coin is fair, as well as probabili-
ties of unfairness to various degrees. In the frequentist theory of inference, such 
postulates are untenable: Probabilities are objective features of the situation that 
specify the chances of events or effects, not hypotheses or causes. 

By contrast, in the Bayesian approach, probabilities represent subjective 
degrees of belief about hypotheses or causes rather than objective facts about 
observations. The observer must quantify beliefs about the chance that the coin 
is unfair to various degrees—in advance of seeing the data.120 These subjective 
probabilities, like the probabilities governing the tosses of the coin, are set up to 
obey the axioms of probability theory. The probabilities for the various hypotheses 
about the coin, specified before data collection, are called prior probabilities.

117.  Operating characteristics include the expected value and standard error of estimators, prob-
abilities of error for statistical tests, and the like.

118.  In speaking of “frequentist statisticians” or “Bayesian statisticians,” we do not mean to sug-
gest that all statisticians fall on one side of the philosophical divide or the other. These are archetypes. 
Many practicing statisticians are pragmatists, using whatever procedure they think is appropriate for 
the occasion, and not concerning themselves greatly with foundational issues. 

119.  We call this a converse probability because it is of the form P(H
0
|data) rather than 

P(data|H
0
); an equivalent phrase, “inverse probability,” also is used. Treating P(data|H

0
) as if it were 

the converse probability P(H
0
|data) is the transposition fallacy. For example, most U.S. senators are 

men, but few men are senators. Consequently, there is a high probability that an individual who is a 
senator is a man, but the probability that an individual who is a man is a senator is practically zero. 
For examples of the transposition fallacy in court opinions, see cases cited supra notes 98, 102. The 
frequentist p-value, P(data|H

0
), is generally not a good approximation to the Bayesian P(H

0
|data); the 

latter includes considerations of power and base rates.
120.  For example, let p be the unknown probability that the coin lands heads. What is the 

chance that p exceeds 0.1? 0.6? The Bayesian statistician must be prepared to answer such questions. 
Bayesian procedures are sometimes defended on the ground that the beliefs of any rational observer 
must conform to the Bayesian rules. However, the definition of “rational” is purely formal. See Peter 
C. Fishburn, The Axioms of Subjective Probability, 1 Stat. Sci. 335 (1986); Freedman, supra note 84; 
David Kaye, The Laws of Probability and the Law of the Land, 47 U. Chi. L. Rev. 34 (1979). 
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Prior probabilities can be updated, using Bayes’ rule, given data on how the 
coin actually falls. (The Appendix explains the rule.) In short, a Bayesian statisti-
cian can compute posterior probabilities for various hypotheses about the coin, 
given the data. These posterior probabilities quantify the statistician’s confidence 
in the hypothesis that a coin is fair.121 Although such posterior probabilities relate 
directly to hypotheses of legal interest, they are necessarily subjective, for they 
reflect not just the data but also the subjective prior probabilities—that is, degrees 
of belief about hypotheses formulated prior to obtaining data.

Such analyses have rarely been used in court, and the question of their 
forensic value has been aired primarily in the academic literature. Some statisti-
cians favor Bayesian methods, and some commentators have proposed using these 
methods in some kinds of cases.122 The frequentist view of statistics is more con-
ventional; subjective Bayesians are a well-established minority.123

121.  Here, confidence has the meaning ordinarily ascribed to it, rather than the technical inter-
pretation applicable to a frequentist confidence interval. Consequently, it can be related to the burden 
of persuasion. See D.H. Kaye, Apples and Oranges: Confidence Coefficients and the Burden of Persuasion, 
73 Cornell L. Rev. 54 (1987).

122.  See David H. Kaye et al., The New Wigmore: A Treatise on Evidence: Expert Evidence 
§§ 12.8.5, 14.3.2 (2d ed. 2010); David H. Kaye, Rounding Up the Usual Suspects: A Legal and Logical 
Analysis of DNA Database Trawls, 87 N.C. L. Rev. 425 (2009). In addition, as indicated in the Appen-
dix, Bayes’ rule is crucial in solving certain problems involving conditional probabilities of related 
events. For example, if the proportion of women with breast cancer in a region is known, along with 
the probability that a mammogram of an affected woman will be positive for cancer and that the 
mammogram of an unaffected woman will be negative, then one can compute the numbers of false-
positive and false-negative mammography results that would be expected to arise in a population-wide 
screening program. Using Bayes’ rule to diagnose a specific patient, however, is more problematic, 
because the prior probability that the patient has breast cancer may not equal the population propor-
tion. Nevertheless, to overcome the tendency to focus on a test result without considering the “base 
rate” at which a condition occurs, a diagnostician can apply Bayes’ rule to plausible base rates before 
making a diagnosis. Finally, Bayes’ rule also is valuable as a device to explicate the meaning of concepts 
such as error rates, probative value, and transposition. See, e.g., David H. Kaye, The Double Helix 
and the Law of Evidence (2010); Wigmore, supra, § 7.3.2; David H. Kaye & Jonathan J. Koehler, The 
Misquantification of Probative Value, 27 Law & Hum. Behav. 645 (2003).

123.  “Objective Bayesians” use Bayes’ rule without eliciting prior probabilities from subjective 
beliefs. One strategy is to use preliminary data to estimate the prior probabilities and then apply Bayes’ 
rule to that empirical distribution. This “empirical Bayes” procedure avoids the charge of subjectiv-
ism at the cost of departing from a fully Bayesian framework. With ample data, however, it can be 
effective and the estimates or inferences can be understood in frequentist terms. Another “objective” 
approach is to use “noninformative” priors that are supposed to be independent of all data and prior 
beliefs. However, the choice of such priors can be questioned, and the approach has been attacked by 
frequentists and subjective Bayesians. E.g., Joseph B. Kadane, Is “Objective Bayesian Analysis” Objective, 
Bayesian, or Wise?, 1 Bayesian Analysis 433 (2006), available at http://ba.stat.cmu.edu/journal/2006/
vol01/issue03/kadane.pdf; Jon Williamson, Philosophies of Probability, in Philosophy of Mathematics 
493 (Andrew Irvine ed., 2009) (discussing the challenges to objective Bayesianism).



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

260

V. Correlation and Regression
Regression models are used by many social scientists to infer causation from 
association. Such models have been offered in court to prove disparate impact in 
discrimination cases, to estimate damages in antitrust actions, and for many other 
purposes. Sections V.A, V.B, and V.C cover some preliminary material, showing 
how scatter diagrams, correlation coefficients, and regression lines can be used to 
summarize relationships between variables.124 Section V.D explains the ideas and 
some of the pitfalls.

A. Scatter Diagrams
The relationship between two variables can be graphed in a scatter diagram (also 
called a scatterplot or scattergram). We begin with data on income and education 
for a sample of 178 men, ages 25 to 34, residing in Kansas.125 Each person in 
the sample corresponds to one dot in the diagram. As indicated in Figure 5, the 
horizontal axis shows education, and the vertical axis shows income. Person A 
completed 12 years of schooling (high school) and had an income of $20,000. 
Person B completed 16 years of schooling (college) and had an income of $40,000.

124.  The focus is on simple linear regression. See also Rubinfeld, supra note 21, and the Appen-
dix, infra, and Section II, supra, for further discussion of these ideas with an emphasis on econometrics.

125.  These data are from a public-use CD, Bureau of the Census, U.S. Department of Com-
merce, for the March 2005 Current Population Survey. Income and education are self-reported. 
Income is censored at $100,000. For additional details, see Freedman et al., supra note 12, at A-11. 
Both variables in a scatter diagram have to be quantitative (with numerical values) rather than qualita-
tive (nonnumerical).

5-5 �xed image

Figure 5. �Plotting a scatter diagram. The horizontal axis shows educational level 
and the vertical axis shows income.
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Figure 6 is the scatter diagram for the Kansas data. The diagram confirms an 
obvious point. There is a positive association between income and education. In 
general, persons with a higher educational level have higher incomes. However, 
there are many exceptions to this rule, and the association is not as strong as one 
might expect.

B. Correlation Coefficients
Two variables are positively correlated when their values tend to go up or down 
together, such as income and education in Figure 5. The correlation coefficient 
(usually denoted by the letter r) is a single number that reflects the sign of an asso-
ciation and its strength. Figure 7 shows r for three scatter diagrams: In the first, 
there is no association; in the second, the association is positive and moderate; in 
the third, the association is positive and strong.

A correlation coefficient of 0 indicates no linear association between the 
variables. The maximum value for the coefficient is +1, indicating a perfect linear 
relationship: The dots in the scatter diagram fall on a straight line that slopes up. 
Sometimes, there is a negative association between two variables: Large values 
of one tend to go with small values of the other. The age of a car and its fuel 
economy in miles per gallon illustrate the idea. Negative association is indicated by 
negative values for r. The extreme case is an r of –1, indicating that all the points 
in the scatter diagram lie on a straight line that slopes down.

Weak associations are the rule in the social sciences. In Figure 5, the correla-
tion between income and education is about 0.4. The correlation between college 
grades and first-year law school grades is under 0.3 at most law schools, while the 

5-6 �xed image

Figure 6. �Scatter diagram for income and education: men ages 25 to 34 in Kansas.
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Figure 7. �The correlation coefficient measures the sign of a linear association 
and its strength.

5-7 �xed, broadside

correlation between LSAT scores and first-year grades is generally about 0.4.126 
The correlation between heights of fraternal twins is about 0.5. By contrast, the 
correlation between heights of identical twins is about 0.95.

1. Is the association linear?

The correlation coefficient has a number of limitations, to be considered in turn. 
The correlation coefficient is designed to measure linear association. Figure 8 
shows a strong nonlinear pattern with a correlation close to zero. The correlation 
coefficient is of limited use with nonlinear data.

2. Do outliers influence the correlation coefficient?

The correlation coefficient can be distorted by outliers—a few points that are far 
removed from the bulk of the data. The left-hand panel in Figure 9 shows that 
one outlier (lower right-hand corner) can reduce a perfect correlation to nearly 
nothing. Conversely, the right-hand panel shows that one outlier (upper right-
hand corner) can raise a correlation of zero to nearly one. If there are extreme 
outliers in the data, the correlation coefficient is unlikely to be meaningful.

3. Does a confounding variable influence the coefficient?

The correlation coefficient measures the association between two variables. 
Researchers—and the courts—are usually more interested in causation. Causa-
tion is not the same as association. The association between two variables may 
be driven by a lurking variable that has been omitted from the analysis (supra 

126.  Lisa Anthony Stilwell et al., Predictive Validity of the LSAT: A National Summary of the 
2001–2002 Correlation Studies 5, 8 (2003).
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5-8 �xed image

Figure 8. �The scatter diagram shows a strong nonlinear association with a cor-
relation coefficient close to zero. The correlation coefficient only 
measures the degree of linear association. 

Figure 9. The correlation coefficient can be distorted by outliers. 

5-9 �xed image

Section II.A). For an easy example, there is an association between shoe size and 
vocabulary among schoolchildren. However, learning more words does not cause 
the feet to get bigger, and swollen feet do not make children more articulate. In 
this case, the lurking variable is easy to spot—age. In more realistic examples, the 
lurking variable is harder to identify.127

127.  Green et al., supra note 13, Section IV.C, provides one such example.
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In statistics, lurking variables are called confounders or confounding variables. 
Association often does reflect causation, but a large correlation coefficient is not 
enough to warrant causal inference. A large value of r only means that the depen-
dent variable marches in step with the independent one: Possible reasons include 
causation, confounding, and coincidence. Multiple regression is one method that 
attempts to deal with confounders (infra Section V.D).128

C. Regression Lines
The regression line can be used to describe a linear trend in the data. The regres-
sion line for income on education in the Kansas sample is shown in Figure 10. 
The height of the line estimates the average income for a given educational level. 
For example, the average income for people with 8 years of education is estimated 
at $21,100, indicated by the height of the line at 8 years. The average income for 
people with 16 years of education is estimated at $34,700.

Figure 11 combines the data in Figures 5 and 10: it shows the scatter diagram 
for income and education, with the regression line superimposed. The line shows 
the average trend of income as education increases. Thus, the regression line 
indicates the extent to which a change in one variable (income) is associated with 
a change in another variable (education).

128.  See also Rubinfeld, supra note 21. The difference between experiments and observational 
studies is discussed supra Section II.B.

5-10 �xed image

Figure 10. �The regression line for income on education and its estimates.
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5-11 �xed image

Figure 11. �Scatter diagram for income and education, with the regression line 
indicating the trend.

1. What are the slope and intercept?

The regression line can be described in terms of its intercept and slope. Often, the 
slope is the more interesting statistic. In Figure 11, the slope is $1700 per year. On 
average, each additional year of education is associated with an additional $1700 
of income. Next, the intercept is $7500. This is an estimate of the average income 
for (hypothetical) persons with zero years of education.129 Figure 10 suggests this 
estimate may not be especially good. In general, estimates based on the regression 
line become less trustworthy as we move away from the bulk of the data.

The slope of the regression line has the same limitations as the correlation 
coefficient: (1) The slope may be misleading if the relationship is strongly non-
linear and (2) the slope may be affected by confounders. With respect to (1), the 
slope of $1700 per year in Figure 10 presents each additional year of education 
as having the same value, but some years of schooling surely are worth more and 

129.  The regression line, like any straight line, has an equation of the form y = a + bx. Here, 
a is the intercept (the value of y when x = 0), and b is the slope (the change in y per unit change in 
x). In Figure 9, the intercept of the regression line is $7500 and the slope is $1700 per year. The line 
estimates an average income of $34,700 for people with 16 years of education. This may be computed 
from the intercept and slope as follows:

$7500 + ($1700 per year) × 16 years = $7500 + $22,200 = $34,700.

The slope b is the same anywhere along the line. Mathematically, that is what distinguishes straight 
lines from other curves. If the association is negative, the slope will be negative too. The slope is 
like the grade of a road, and it is negative if the road goes downhill. The intercept is like the starting 
elevation of a road, and it is computed from the data so that the line goes through the center of the 
scatter diagram, rather than being generally too high or too low.
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others less. With respect to (2), the association between education and income is 
no doubt causal, but there are other factors to consider, including family back-
ground. Compared to individuals who did not graduate from high school, people 
with college degrees usually come from richer and better educated families. Thus, 
college graduates have advantages besides education. As statisticians might say, 
the effects of family background are confounded with the effects of education. 
Statisticians often use the guarded phrases “on average” and “associated with” 
when talking about the slope of the regression line. This is because the slope has 
limited utility when it comes to making causal inferences.

2. What is the unit of analysis?

If association between characteristics of individuals is of interest, these character-
istics should be measured on individuals. Sometimes individual-level data are not 
to be had, but rates or averages for groups are available. “Ecological” correlations 
are computed from such rates or averages. These correlations generally overstate 
the strength of an association. For example, average income and average education 
can be determined for men living in each state and in Washington, D.C. The cor-
relation coefficient for these 51 pairs of averages turns out to be 0.70. However, 
states do not go to school and do not earn incomes. People do. The correlation for 
income and education for men in the United States is only 0.42. The correlation 
for state averages overstates the correlation for individuals—a common tendency 
for ecological correlations.130

Ecological analysis is often seen in cases claiming dilution in voting strength 
of minorities. In this type of voting rights case, plaintiffs must prove three things: 
(1) the minority group constitutes a majority in at least one district of a proposed 
plan; (2) the minority group is politically cohesive, that is, votes fairly solidly for 
its preferred candidate; and (3) the majority group votes sufficiently as a bloc to 
defeat the minority-preferred candidate.131 The first requirement is compactness; 
the second and third define polarized voting.

130.  Correlations are computed from the March 2005 Current Population Survey for men 
ages 25–64. Freedman et al., supra note 12, at 149. The ecological correlation uses only the average 
figures, but within each state there is a lot of spread about the average. The ecological correlation 
smoothes away this individual variation. Cf. Green et al., supra note 13, Section II.B.4 (suggesting 
that ecological studies of exposure and disease are “far from conclusive” because of the lack of data on 
confounding variables (a much more general problem) as well as the possible aggregation bias described 
here); David A. Freedman, Ecological Inference and the Ecological Fallacy, in 6 Int’l Encyclopedia of the 
Social and Behavioral Sciences 4027 (Neil J. Smelser & Paul B. Baltes eds., 2001).

131.  See Thornburg v. Gingles, 478 U.S. 30, 50–51 (1986) (“First, the minority group must be 
able to demonstrate that it is sufficiently large and geographically compact to constitute a majority in 
a single-member district. . . . Second, the minority group must be able to show that it is politically 
cohesive. . . . Third, the minority must be able to demonstrate that the white majority votes sufficiently 
as a bloc to enable it . . . usually to defeat the minority’s preferred candidate.”). In subsequent cases, 
the Court has emphasized that these factors are not sufficient to make out a violation of section 2 of 
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The secrecy of the ballot box means that polarized voting cannot be directly 
observed. Instead, plaintiffs in voting rights cases rely on ecological regression, 
with scatter diagrams, correlations, and regression lines to estimate voting behavior 
by groups and demonstrate polarization. The unit of analysis typically is the pre-
cinct. For each precinct, public records can be used to determine the percentage of 
registrants in each demographic group of interest, as well as the percentage of the 
total vote for each candidate—by voters from all demographic groups combined. 
Plaintiffs’ burden is to determine the vote by each demographic group separately.

Figure 12 shows how the argument unfolds. Each point in the scatter diagram 
represents data for one precinct in the 1982 Democratic primary election for audi-
tor in Lee County, South Carolina. The horizontal axis shows the percentage of 
registrants who are white. The vertical axis shows the turnout rate for the white 
candidate. The regression line is plotted too. The slope would be interpreted as 
the difference between the white turnout rate and the black turnout rate for the 
white candidate. Furthermore, the intercept would be interpreted as the black 
turnout rate for the white candidate.132 The validity of such estimates is contested 
in the statistical literature.133

the Voting Rights Act. E.g., Johnson v. De Grandy, 512 U.S. 997, 1011 (1994) (“Gingles . . . clearly 
declined to hold [these factors] sufficient in combination, either in the sense that a court’s examination 
of relevant circumstances was complete once the three factors were found to exist, or in the sense that 
the three in combination necessarily and in all circumstances demonstrated dilution.”).

132.  By definition, the turnout rate equals the number of votes for the candidate, divided by the 
number of registrants; the rate is computed separately for each precinct. The intercept of the line in 
Figure 11 is 4%, and the slope is 0.52. Plaintiffs would conclude that only 4% of the black registrants 
voted for the white candidate, while 4% + 52% = 56% of the white registrants voted for the white 
candidate, which demonstrates polarization.

133.  For further discussion of ecological regression in this context, see D. James Greiner, Eco-
logical Inference in Voting Rights Act Disputes: Where Are We Now, and Where Do We Want to Be?, 47 
Jurimetrics J. 115 (2007); Bernard Grofman & Chandler Davidson, Controversies in Minority Vot-
ing: The Voting Rights Act in Perspective (1992); Stephen P. Klein & David A. Freedman, Ecologi-
cal Regression in Voting Rights Cases, 6 Chance 38 (Summer 1993). The use of ecological regression 
increased considerably after the Supreme Court noted in Thornburg v. Gingles, 478 U.S. 30, 53 n.20 
(1986), that “[t]he District Court found both methods [extreme case analysis and bivariate ecological 
regression analysis] standard in the literature for the analysis of racially polarized voting.” See, e.g., 
Cottier v. City of Martin, 445 F.3d 1113, 1118 (8th Cir. 2006) (ecological regression is one of the 
“proven approaches to evaluating elections”); Bruce M. Clarke & Robert Timothy Reagan, Fed. 
Judicial Ctr., Redistricting Litigation: An Overview of Legal, Statistical, and Case-Management Issues 
(2002); Greiner, supra, at 117, 121. Nevertheless, courts have cautioned against “overreliance on 
bivariate ecological regression” in light of the inherent limitations of the technique. Lewis v. Alamance 
County, 99 F.3d 600, 604 n.3 (4th Cir. 1996); Johnson v. Hamrick, 296 F.3d 1065, 1080 n.4 (11th 
Cir. 2002) (“as a general rule, homogenous precinct analysis may be more reliable than ecological 
regression.”). However, there are problems with both methods. See, e.g., Greiner, supra, at 123–39 
(arguing that homogeneous precinct analysis is fundamentally flawed and that courts need to be more 
discerning in dealing with ecological regression). 

Redistricting plans based predominantly on racial considerations are unconstitutional unless 
narrowly tailored to meet a compelling state interest. Shaw v. Reno, 509 U.S. 630 (1993). Whether 
compliance with the Voting Rights Act can be considered a compelling interest is an open ques-
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Figure 12. �Turnout rate for the white candidate plotted against the percentage 
of registrants who are white. Precinct-level data, 1982 Democratic 
Primary for Auditor, Lee County, South Carolina.

Source: Data from James W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote 
Dilution Litigation, 21 Urb. Law. 589, 591 tbl.1 (1989).

D. Statistical Models
Statistical models are widely used in the social sciences and in litigation. For 
example, the census suffers an undercount, more severe in certain places than 
others. If some statistical models are to be believed, the undercount can be 
corrected—moving seats in Congress and millions of dollars a year in tax funds.134 
Other models purport to lift the veil of secrecy from the ballot box, enabling the 
experts to determine how minority groups have voted—a crucial step in voting 
rights litigation (supra Section V.C). This section discusses the statistical logic of 
regression models.

A regression model attempts to combine the values of certain variables (the 
independent variables) to get expected values for another variable (the dependent 
variable). The model can be expressed in the form of a regression equation. A 
simple regression equation has only one independent variable; a multiple regres-
sion equation has several independent variables. Coefficients in the equation will 
be interpreted as showing the effects of changing the corresponding variables. This 
is justified in some situations, as the next example demonstrates.

tion, but efforts to sustain racially motivated redistricting on this basis have not fared well before the 
Supreme Court. See Abrams v. Johnson, 521 U.S. 74 (1997); Shaw v. Hunt, 517 U.S. 899 (1996); 
Bush v. Vera, 517 U.S. 952 (1996).

134.  See Brown et al., supra note 29; supra note 89.
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Hooke’s law (named after Robert Hooke, England, 1653–1703) describes 
how a spring stretches in response to a load: Strain is proportional to stress. To 
verify Hooke’s law experimentally, a physicist will make a number of observations 
on a spring. For each observation, the physicist hangs a weight on the spring and 
measures its length. A statistician could develop a regression model for these data: 

	 length = a + b × weight + e.	 (1)

The error term, denoted by the Greek letter epsilon e, is needed because measured 
length will not be exactly equal to a + b × weight. If nothing else, measurement 
error must be reckoned with. The model takes e as “random error”—behaving 
like draws made at random with replacement from a box of tickets. Each ticket 
shows a potential error, which will be realized if that ticket is drawn. The average 
of the potential errors in the box is assumed to be zero.

Equation (1) has two parameters, a and b. These constants of nature char-
acterize the behavior of the spring: a is length under no load, and b is elasticity 
(the increase in length per unit increase in weight). By way of numerical illustra-
tion, suppose a is 400 and b is 0.05. If the weight is 1, the length of the spring is 
expected to be 

400 + 0.05 = 400.05.

If the weight is 3, the expected length is

400 + 3 × 0.05 = 400 + 0.15 = 400.15.

In either case, the actual length will differ from expected, by a random error e.
In standard statistical terminology, the e’s for different observations on the 

spring are assumed to be independent and identically distributed, with a mean of 
zero. Take the e’s for the first two observations. Independence means that the 
chances for the second e do not depend on outcomes for the first. If the errors are 
like draws made at random with replacement from a box of tickets, as we assumed 
earlier, that box will not change from one draw to the next—independence. 
“Identically distributed” means that the chance behavior of the two e’s is the 
same: They are drawn at random from the same box. (See infra Appendix for 
additional discussion.)

The parameters a and b in equation (1) are not directly observable, but they 
can be estimated by the method of least squares.135 Statisticians often denote esti-

135.  It might seem that a is observable; after all, we can measure the length of the spring with 
no load. However, the measurement is subject to error, so we observe not a, but a + e. See equa-
tion (1). The parameters a and b can be estimated, even estimated very well, but they cannot be 
observed directly. The least squares estimates of a and b are the intercept and slope of the regression 
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mates by hats. Thus, â is the estimate for a, and b̂  is the estimate for b. The values 
of â and b̂  are chosen to minimize the sum of the squared prediction errors. These 
errors are also called residuals. They measure the difference between the actual 
length of the spring and the predicted length, the latter being â  + b̂  × weight:

	 actual length = â + b̂  × weight + residual.	 (2)

Of course, no one really imagines there to be a box of tickets hidden in the 
spring. However, the variability of physical measurements (under many but by 
no means all circumstances) does seem to be remarkably like the variability in 
draws from a box.136 In short, the statistical model corresponds rather closely to 
the empirical phenomenon. 

Equation (1) is a statistical model for the data, with unknown parameters a 
and b. The error term e is not observable. The model is a theory—and a good 
one—about how the data are generated. By contrast, equation (2) is a regression 
equation that is fitted to the data: The intercept â, the slope b̂, and the residual can 
all be computed from the data. The results are useful because â is a good estimate 
for a, and b̂  is a good estimate for b. (Similarly, the residual is a good approxi-
mation to e.) Without the theory, these estimates would be less useful. Is there a 
theoretical model behind the data processing? Is the model justifiable? These ques-
tions can be critical when it comes to making statistical inferences from the data.

In social science applications, statistical models often are invoked without an 
independent theoretical basis. We give an example involving salary discrimination 
in the Appendix.137 The main ideas of such regression modeling can be captured 
in a hypothetical exchange between a plaintiff seeking to prove salary discrimi-
nation and a company denying the allegation. Such a dialog might proceed as 
follows:

1.	 Plaintiff argues that the defendant company pays male employees more 
than females, which establishes a prima facie case of discrimination. 

2.	 The company responds that the men are paid more because they are better 
educated and have more experience.

3.	 Plaintiff refutes the company’s theory by fitting a regression equation that 
includes a particular, presupposed relationship between salary (the depen-
dent variable) and some measures of education and experience. Plaintiff’s 
expert reports that even after adjusting for differences in education and 

line. See supra Section V.C.1; Freedman et al., supra note 12, at 208–10. The method of least squares 
was developed by Adrien-Marie Legendre (France, 1752–1833) and Carl Friedrich Gauss (Germany, 
1777–1855) to fit astronomical orbits.

136.  This is the Gauss model for measurement error. See Freedman et al., supra note 12, at 
450–52.

137.  The Reference Guide to Multiple Regression in this manual describes a comparable 
example.
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experience in this specific manner, men earn more than women. This 
remaining difference in pay shows discrimination.

4.	 The company argues that the difference could be the result of chance, not 
discrimination.

5.	 Plaintiff replies that because the coefficient for gender in the model is 
statistically significant, chance is not a good explanation for the data.138

In step 3, the three explanatory variables are education (years of schooling 
completed), experience (years with the firm), and a dummy variable for gender 
(1 for men and 0 for women). These are supposed to predict salaries (dollars per 
year). The equation is a formal analog of Hooke’s law (equation 1). According to 
the model, an employee’s salary is determined as if by computing

	 a + (b × education) + (c × experience) + (d × gender),	 (3)

and then adding an error e drawn at random from a box of tickets.139 The 
parameters a, b, c, and d, are estimated from the data by the method of least squares. 

In step 5, the estimated coefficient d for the dummy variable turns out to be 
positive and statistically significant and is offered as evidence of disparate impact. 
Men earn more than women, even after adjusting for differences in background 
factors that might affect productivity. This showing depends on many assump-
tions built into the model.140 Hooke’s law—equation (1)—is relatively easy to test 
experimentally. For the salary discrimination model, validation would be difficult. 
When expert testimony relies on statistical models, the court may well inquire, 
what are the assumptions behind the model, and why do they apply to the case at 
hand? It might then be important to distinguish between two situations:

•	 The nature of the relationship between the variables is known and regres-
sion is being used to make quantitative estimates of parameters in that 
relationship, or

•	 The nature of the relationship is largely unknown and regression is being 
used to determine the nature of the relationship—or indeed whether any 
relationship exists at all.

138.  In some cases, the p-value has been interpreted as the probability that defendants are inno-
cent of discrimination. However, as noted earlier, such an interpretation is wrong: p merely represents 
the probability of getting a large test statistic, given that the model is correct and the true coefficient 
for gender is zero (see supra Section IV.B, infra Appendix, Section D.2). Therefore, even if we grant 
the model, a p-value less than 50% does not demonstrate a preponderance of the evidence against the 
null hypothesis.

139.  Expression (3) is the expected value for salary, given the explanatory variables (education, 
experience, gender). The error term is needed to account for deviations from expected: Salaries are not 
going to be predicted very well by linear combinations of variables such as education and experience.

140.  See infra Appendix. 
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Regression was developed to handle situations of the first type, with Hooke’s law 
being an example. The basis for the second type of application is analogical, and 
the tightness of the analogy is an issue worth exploration.

In employment discrimination cases, and other contexts too, a wide variety 
of models can be used. This is only to be expected, because the science does not 
dictate specific equations. In a strongly contested case, each side will have its own 
model, presented by its own expert. The experts will reach opposite conclusions 
about discrimination. The dialog might continue with an exchange about which 
model is better. Although statistical assumptions are challenged in court from time 
to time, arguments more commonly revolve around the choice of variables. One 
model may be questioned because it omits variables that should be included—for 
example, skill levels or prior evaluations.141 Another model may be challenged 
because it includes tainted variables reflecting past discriminatory behavior by 
the firm.142 The court must decide which model—if either—fits the occasion.143 

The frequency with which regression models are used is no guarantee that 
they are the best choice for any particular problem. Indeed, from one perspective, 
a regression or other statistical model may seem to be a marvel of mathematical 
rigor. From another perspective, the model is a set of assumptions, supported only 
by the say-so of the testifying expert. Intermediate judgments are also possible.144

141.  E.g., Bazemore v. Friday, 478 U.S. 385 (1986); In re Linerboard Antitrust Litig., 497 F. 
Supp. 2d 666 (E.D. Pa. 2007).

142.  E.g., McLaurin v. Nat’l R.R. Passenger Corp., 311 F. Supp. 2d 61, 65–66 (D.D.C. 2004) 
(holding that the inclusion of two allegedly tainted variables was reasonable in light of an earlier 
consent decree).

143.  E.g., Chang v. Univ. of R.I., 606 F. Supp. 1161, 1207 (D.R.I. 1985) (“it is plain to the 
court that [defendant’s] model comprises a better, more useful, more reliable tool than [plaintiff’s] 
counterpart.”); Presseisen v. Swarthmore College, 442 F. Supp. 593, 619 (E.D. Pa. 1977) (“[E]ach 
side has done a superior job in challenging the other’s regression analysis, but only a mediocre job in 
supporting their own . . . and the Court is . . . left with nothing.”), aff’d, 582 F.2d 1275 (3d Cir. 1978).

144.  See, e.g., David W. Peterson, Reference Guide on Multiple Regression, 36 Jurimetrics J. 213, 
214–15 (1996) (review essay); see supra note 21 for references to a range of academic opinion. More 
recently, some investigators have turned to graphical models. However, these models have serious 
weaknesses of their own. See, e.g., David A. Freedman, On Specifying Graphical Models for Causation, 
and the Identification Problem, 26 Evaluation Rev. 267 (2004).
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Appendix
A. Frequentists and Bayesians
The mathematical theory of probability consists of theorems derived from axioms 
and definitions. Mathematical reasoning is seldom controversial, but there may be 
disagreement as to how the theory should be applied. For example, statisticians 
may differ on the interpretation of data in specific applications. Moreover, there 
are two main schools of thought about the foundations of statistics: frequentist 
and Bayesian (also called objectivist and subjectivist).145

Frequentists see probabilities as empirical facts. When a fair coin is tossed, 
the probability of heads is 1/2; if the experiment is repeated a large number of 
times, the coin will land heads about one-half the time. If a fair die is rolled, the 
probability of getting an ace (one spot) is 1/6. If the die is rolled many times, an 
ace will turn up about one-sixth of the time.146 Generally, if a chance experiment 
can be repeated, the relative frequency of an event approaches (in the long run) 
its probability. By contrast, a Bayesian considers probabilities as representing not 
facts but degrees of belief: In whole or in part, probabilities are subjective.

Statisticians of both schools use conditional probability—that is, the prob-
ability of one event given that another has occurred. For example, suppose a coin 
is tossed twice. One event is that the coin will land HH. Another event is that at 
least one H will be seen. Before the coin is tossed, there are four possible, equally 
likely, outcomes: HH, HT, TH, TT. So the probability of HH is 1/4. However, if 
we know that at least one head has been obtained, then we can rule out two tails 
TT. In other words, given that at least one H has been obtained, the conditional 
probability of TT is 0, and the first three outcomes have conditional probability 
1/3 each. In particular, the conditional probability of HH is 1/3. This is usually 
written as P(HH|at least one H) = 1/3. More generally, the probability of an event 
C is denoted P(C); the conditional probability of D given C is written as P(D|C).

Two events C and D are independent if the conditional probability of D 
given that C occurs is equal to the conditional probability of D given that C does 
not occur. Statisticians use “~C” to denote the event that C does not occur. Thus 
C and D are independent if P(D|C) = P(D|~C). If C and D are independent, 
then the probability that both occur is equal to the product of the probabilities:

	 P(C and D) = P(C ) × P(D).	 (A1)

145.  But see supra note 123 (on “objective Bayesianism”).
146.  Probabilities may be estimated from relative frequencies, but probability itself is a subtler 

idea. For example, suppose a computer prints out a sequence of 10 letters H and T (for heads and 
tails), which alternate between the two possibilities H and T as follows: H T H T H T H T H T. 
The relative frequency of heads is 5/10 or 50%, but it is not at all obvious that the chance of an H 
at the next position is 50%. There are difficulties in both the subjectivist and objectivist positions. See 
Freedman, supra note 84.
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This is the multiplication rule (or product rule) for independent events. If events 
are dependent, then conditional probabilities must be used:

	 P(C and D) = P(C) × P(D|C).	 (A2)

This is the multiplication rule for dependent events.
Bayesian statisticians assign probabilities to hypotheses as well as to events; 

indeed, for them, the distinction between hypotheses and events may not be 
a sharp one. We turn now to Bayes’ rule. If H0 and H1 are two hypotheses147 
that govern the probability of an event A, a Bayesian can use the multiplication 
rule (A2) to find that

	 P(A and H0) = P(A|H0)P(H0)	 (A3)

and

	 P(A and H1) = P(A|H1)P(H1).	 (A4)

Moreover, 

	 P(A) = P(A and H0) + P(A and H1).	 (A5)

The multiplication rule (A2) also shows that

	

P H A
P A and H

P A
1

1| .( )=
( )

( ) 	 (A6)

We use (A4) to evaluate P(A and H1) in the numerator of (A6), and (A3), (A4), 
and (A5) to evaluate P(A) in the denominator:

	

P H A
P A|H P H

P A|H P H P A|H P H
1

0 1
1

1

0 1

|( )=
( ) ( )

( ) ( )+ ( ) (( ). 	 (A7)

This is a special case of Bayes’ rule. It yields the conditional probability of hypoth-
esis H0 given that event A has occurred. 

For a stylized example in a criminal case, H0 is the hypothesis that blood 
found at the scene of a crime came from a person other than the defendant; H1 is 
the hypothesis that the blood came from the defendant; A is the event that blood 
from the crime scene and blood from the defendant are both type A. Then P(H0) 
is the prior probability of H0, based on subjective judgment, while P(H0|A) is the 
posterior probability—updated from the prior using the data. 

147.  H0 is read “H-sub-zero,” while H1 is “H-sub-one.”
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Type A blood occurs in 42% of the population. So P(A|H0) = 0.42.148 
Because the defendant has type A blood, P(A|H1) = 1. Suppose the prior prob-
abilities are P(H0) = P(H1) = 0.5. According to (A7), the posterior probability 
that the blood is from the defendant is

	
P H A1

1 05
042 05 1 05

070|
.

. . .
. .( ) = ×

× + ×
= 	 (A8)

Thus, the data increase the likelihood that the blood is the defendant’s. The prob-
ability went up from the prior value of P(H1) = 0.50 to the posterior value of 
P(H1|A) = 0.70.

More generally, H0 and H1 refer to parameters in a statistical model. For a styl-
ized example in an employment discrimination case, H0 asserts equal selection rates 
in a population of male and female applicants; H1 asserts that the selection rates are 
not equal; A is the event that a test statistic exceeds 2 in absolute value. In such situ-
ations, the Bayesian proceeds much as before. However, the frequentist computes 
P(A|H0), and rejects H0 if this probability falls below 5%. Frequentists have to stop 
there, because they view P(H0|A) as poorly defined at best. In their setup, P(H0) 
and P(H1) rarely make sense, and these prior probabilities are needed to compute 
P(H1|A): See supra equation (A7).

Assessing probabilities, conditional probabilities, and independence is not 
entirely straightforward, either for frequentists or Bayesians. Inquiry into the basis 
for expert judgment may be useful, and casual assumptions about independence 
should be questioned.149

B. The Spock Jury: Technical Details
The rest of this Appendix provides some technical backup for the examples in Sec-
tions IV and V, supra. We begin with the Spock jury case. On the null hypothesis, 
a sample of 350 people was drawn at random from a large population that was 
50% male and 50% female. The number of women in the sample follows the 
binomial distribution. For example, the chance of getting exactly 102 women in 
the sample is given by the binomial formula150

	

n

j n j
f fj n j!

! !
.

× −( ) −( ) −
1 	 (A9)

148.  Not all statisticians would accept the identification of a population frequency with P(A|H0). 
Indeed, H0 has been translated into a hypothesis that the true donor has been selected from the popula-
tion at random (i.e., in a manner that is uncorrelated with blood type). This step needs justification. 
See supra note 123.

149.  For problematic assumptions of independence in litigation, see, e.g., Wilson v. State, 803 
A.2d 1034 (Md. 2002) (error to admit multiplied probabilities in a case involving two deaths of infants 
in same family); 1 McCormick, supra note 2, § 210; see also supra note 29 (on census litigation).

150.  The binomial formula is discussed in, e.g., Freedman et al., supra note 12, at 255–61.
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In the formula, n stands for the sample size, and so n = 350; and j = 102. The 
f is the fraction of women in the population; thus, f = 0.50. The exclamation 
point denotes factorials: 1! = 1, 2! = 2 × 1 = 2, 3! = 3 × 2 × 1 = 6, and so forth. 
The chance of 102 women works out to 10–15. In the same way, we can com-
pute the chance of getting 101 women, or 100, or any other particular number. 
The chance of getting 102 women or fewer is then computed by addition. The 
chance is p = 2 × 10–15, as reported supra note 98. This is very bad news for the 
null hypothesis.

With the binomial distribution given by (9), the expected the number of 
women in the sample is

	 n f = × =350 05 175. . 	 (A10)

The standard error is

	
n f f× × −( ) = × × =1 350 05 05 935. . . . 	 (A11)

The observed value of 102 is nearly 8 SEs below the expected value, which is a 
lot of SEs.

Figure 13 shows the probability histogram for the number of women in the 
sample.151 The graph is drawn so that the area between two values is proportional 
to the chance that the number of women will fall in that range. For example, take 
the rectangle over 175; its base covers the interval from 174.5 to 175.5. The area 
of this rectangle is 4.26% of the total area. So the chance of getting exactly 175 
women is 4.26%. Next, take the range from 165 to 185 (inclusive): 73.84% of the 
area falls into this range. This means there is a 73.84% chance that the number of 
women in the sample will be in the range from 165 to 185 (inclusive).

According to a fundamental theorem in statistics (the central limit theorem), 
the histogram follows the normal curve.152 Figure 13 shows the curve for com-
parison: The normal curve is almost indistinguishable from the top of the histo-
gram. For a numerical example, suppose the jury panel had included 155 women. 
On the null hypothesis, there is about a 1.85% chance of getting 155 women or 
fewer. The normal curve gives 1.86%. The error is nil. Ordinarily, we would just 
report p = 2%, as in the text (supra Section IV.B.1).

Finally, we consider power. Suppose we reject the null hypothesis when the 
number of women in the sample is 155 or less. Let us assume a particular alterna-
tive hypothesis that quantifies the degree of discrimination against women: The 
jury panel is selected at random from a population that is 40% female, rather than 
50%. Figure 14 shows the probability histogram for the number of women, but 
now the histogram is computed according to the alternative hypothesis. Again, 

151.  Probability histograms are discussed in, e.g., id. at 310–13.
152.  The central limit theorem is discussed in, e.g., id. at 315–27.
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Figure 5-13.eps
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Note: The vertical line is placed at 155.5, and so the area to the left of it includes the rectangles over 
155, 154, . . . ; the area represents the chance of getting 155 women or fewer. Cf. Freedman et al., 
supra note 12, at 317. The units on the vertical axis are “percent per standard unit”; cf. id. at 80, 315.

Figure 13. �Probability histogram for the number of women in a random sample 
of 350 people drawn from a large population that is 50% female and 
50% male. The normal curve is shown for comparison. About 2% of 
the area under the histogram is to the left of 155 (marked by a heavy 
vertical line). 

5-14 �xed image

Figure 14. �Probability histogram for the number of women in a random sample 
of 350 people drawn from a large population that is 40% female and 
60% male. The normal curve is shown for comparison. The area to 
the left of 155 (marked by a heavy vertical line) is about 95%. 
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the histogram follows the normal curve. About 95% of the area is to the left of 
155, and so power is about 95%. The area can be computed exactly by using the 
binomial distribution, or to an excellent approximation using the normal curve.

Figures 13 and 14 have the same shape: The central limit theorem is at work. 
However, the histograms are centered differently. Figure 13 is centered at 175, 
according to requirements of the null hypothesis. Figure 14 is centered at 140, 
because the alternative hypothesis is used to determine the center, not the null 
hypothesis. Thus, 155 is well to the left of center in Figure 13, and well to the 
right in Figure 14: The figures have different centers. The main point of Figures 13 
and 14 is that chances can often be approximated by areas under the normal curve, 
justifying the large-sample theory presented supra Sections IV.A–B.

C. The Nixon Papers: Technical Details
With the Nixon papers, the population consists of 20,000 boxes. A random sample 
of 500 boxes is drawn and each sample box is appraised. Statistical theory enables 
us to make some precise statements about the behavior of the sample average.

•	 The expected value of the sample average equals the population aver-
age. Even more tersely, the sample average is an unbiased estimate of the 
population average.

•	 The standard error for the sample average equals

	

N n
N n

−
−

×
1

σ
. 	 (A12)

In (A12), the N stands for the size of the population, which is 20,000; and n stands 
for the size of the sample, which is 500. The first factor in (A12), with the square 
root, is the finite sample correction factor. Here, as in many other such examples, 
the correction factor is so close to 1 that it can safely be ignored. (This is why the 
size of population usually has no bearing on the precision of the sample average as 
an estimator for the population average.) Next, s is the population standard devia-
tion. This is unknown, but it can be estimated by the sample standard deviation, 
which is $2200. The SE for the sample mean is therefore estimated from the data as 
$2200/ 500 , which is nearly $100. Plaintiff’s total claim is 20,000 times the sam-
ple average. The SE for the total claim is therefore 20,000 × $100 = $2,000,000. 
(Here, the size of the population comes into the formula.)

With a large sample, the probability histogram for the sample average follows 
the normal curve quite closely. That is a consequence of the central limit theorem. 
The center of the histogram is the population average. The SE is given by (A12), 
and is about $100. 
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•	 What is the chance that the sample average differs from the popula-
tion average by 1 SE or less? This chance is equal to the area under the 
probability histogram within 1 SE of average, which by the central limit 
theorem is almost equal to the area under the standard normal curve 
between –1 and 1; that normal area is about 68%.

•	 What is the chance that the sample average differs from the population 
average by 2 SE or less? By the same reasoning, this chance is about equal 
to the area under the standard normal curve between –2 and 2, which is 
about 95%.

•	 What is the chance that the sample average differs from the population 
average by 3 SE or less? This chance is about equal to the area under the 
standard normal curve between –3 and 3, which is about 99.7%.

To sum up, the probability histogram for the sample average is centered at 
the population average. The spread is given by the standard error. The histogram 
follows the normal curve. That is why confidence levels can be based on the stan-
dard error, with confidence levels read off the normal curve—for estimators that 
are essentially unbiased, and obey the central limit theorem (supra Section IV.A.2, 
Appendix Section B).153 These large-sample methods generally work for sums, 
averages, and rates, although much depends on the design of the sample.

More technically, the normal curve is the density of a normal distribution. 
The standard normal density has mean equal to 0 and standard error equal to 1. 
Its equation is

y e x= − 2 2 2/ / π

where e = 2.71828. . . and p = 3.14159. . . . This density can be rescaled to have 
any desired mean and standard error. The resulting densities are the famous 
“normal curves” or “bell-shaped curves” of statistical theory. In Figure 12, the 
density is scaled to match the probability histogram in terms of the mean and 
standard error; likewise in Figure 13.

D. �A Social Science Example of Regression: Gender Discrimination 
in Salaries 

1. The regression model

To illustrate social science applications of the kind that might be seen in litigation, 
Section V referred to a stylized example on salary discrimination. A particular 

153.  See, e.g., id. at 409–24. On the standard deviation, see supra Section III.E; Freedman et al., 
supra note 12, at 67–72. The finite sample correction factor is discussed in id. at 367–70.
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regression model was used to predict salaries (dollars per year) of employees in a 
firm. It had three explanatory variables: education (years of schooling completed), 
experience (years with the firm), and a dummy variable for gender (1 for men and 
0 for women). The regression equation is 

	 salary = a + b × education + c × experience + d × gender + e.	 (A13)

Equation (A13) is a statistical model for the data, with unknown parameters a, b, c, 
and d. Here, a is the intercept and the other parameters are regression coefficients. 
The e at the end of the equation is an unobservable error term. In the right-hand 
side of (A3) and similar expressions, by convention, the multiplications are done 
before the additions. 

As noted in Section V, the equation is a formal analog of Hooke’s law (1). 
According to the model, an employee’s salary is determined as if by computing

	 a + b × education + c × experience + d × gender	 (A14)

and then adding an error e drawn at random from a box of tickets. Expres-
sion (A14) is the expected value for salary, given the explanatory variables (educa-
tion, experience, gender). The error term is needed to account for deviations from 
expected: Salaries are not going to be predicted very well by linear combinations 
of variables such as education and experience.

The parameters are estimated from the data using least squares. If the esti-
mated coefficient for the dummy variable turns out to be positive and statistically 
significant, that would be evidence of disparate impact. Men earn more than 
women, even after adjusting for differences in background factors that might affect 
productivity. Suppose the estimated equation turns out as follows:

predicted salary = $7100 + $1300 × education + $2200
	 × experience + $700 × gender.	 (A15)

According to (A15), the estimated value for the intercept a in (A14) is $7100; the 
estimated value for the coefficient b is $1300, and so forth. According to equation 
(A15), every extra year of education is worth $1300. Similarly, every extra year 
of experience is worth $2200. And, most important, the company gives men a 
salary premium of $700 over women with the same education and experience. 

A male employee with 12 years of education (high school) and 10 years of 
experience, for example, would have a predicted salary of

$7100 + $1300 × 12 + $2200 × 10 + $700 × 1 
	 = $7100 + $15,600 + $22,000 + $700 = $45,400.	 (A16)

A similarly situated female employee has a predicted salary of only
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$7100 + $1300 × 12 + $2200 × 10 + $700 × 0
	 = $7100 + $15,600 + $22,000 + $0 = $44,700.	 (A17)

Notice the impact of the gender variable in the model: $700 is added to equation 
(A16), but not to equation (A17).

A major step in proving discrimination is showing that the estimated 
coefficient of the gender variable—$700 in the numerical illustration—is statisti-
cally significant. This showing depends on the assumptions built into the model. 
Thus, each extra year of education is assumed to be worth the same across all levels 
of experience. Similarly, each extra year of experience is worth the same across all 
levels of education. Furthermore, the premium paid to men does not depend sys-
tematically on education or experience. Omitted variables such as ability, quality 
of education, or quality of experience do not make any systematic difference to 
the predictions of the model.154 These are all assumptions made going into the 
analysis, rather than conclusions coming out of the data.

Assumptions are also made about the error term—the mysterious e at the end 
of (A13). The errors are assumed to be independent and identically distributed 
from person to person in the dataset. Such assumptions are critical when comput-
ing p-values and demonstrating statistical significance. Regression modeling that 
does not produce statistically significant coefficients will not be good evidence 
of discrimination, and statistical significance cannot be established unless stylized 
assumptions are made about unobservable error terms. 

The typical regression model, like the one sketched above, therefore involves a 
host of assumptions. As noted in Section V, Hooke’s law—equation (1)—is relatively 
easy to test experimentally. For the salary discrimination model—equation (A13)—
validation would be difficult. That is why we suggested that when expert testimony 
relies on statistical models, the court may well inquire about the assumptions behind 
the model and why they apply to the case at hand. 

2. Standard errors, t-statistics, and statistical significance

Statistical proof of discrimination depends on the significance of the estimated 
coefficient for the gender variable. Significance is determined by the t-test, using 
the standard error. The standard error measures the likely difference between 
the estimated value for the coefficient and its true value. The estimated value is 
$700—the coefficient of the gender variable in equation (A5); the true value d 
in (A13), remains unknown. According to the model, the difference between 
the estimated value and the true value is due to the action of the error term e in 
(A3). Without e, observed values would line up perfectly with expected values, 

154.  Technically, these omitted variables are assumed to be independent of the error term in 
the equation.
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and estimated values for parameters would be exactly equal to true values. This 
does not happen.

The t-statistic is the estimated value divided by its standard error. For exam-
ple, in (A15), the estimate for d is $700. If the standard error is $325, then t is 
$700/$325 = 2.15. This is significant—that is, hard to explain as the product 
of random error. Under the null hypothesis that d is zero, there is only about a 
5% chance that the absolute value of t is greater than 2. (We are assuming the 
sample is large.) Thus, statistical significance is achieved (supra Section IV.B.2). 
Significance would be taken as evidence that d—the true parameter in the model 
(A13)—does not vanish. According to a viewpoint often presented in the social 
science journals and the courtroom, here is statistical proof that gender matters 
in determining salaries. On the other hand, if the standard error is $1400, then t 
is $700/$1400 = 0.5. The difference between the estimated value of d and zero 
could easily result from chance. So the true value of d could well be zero, in which 
case gender does not affect salaries. 

Of course, the parameter d is only a construct in a model. If the model is 
wrong, the standard error, t-statistic, and significance level are rather difficult to 
interpret. Even if the model is granted, there is a further issue. The 5% is the 
chance that the absolute value of t exceeds 2, given the model and given the null 
hypothesis that d is zero. However, the 5% is often taken to be the chance of the 
null hypothesis given the data. This misinterpretation is commonplace in the social 
science literature, and it appears in some opinions describing expert testimony.155 
For a frequentist statistician, the chance that d is zero given the data makes no 
sense: Parameters do not exhibit chance variation. For a Bayesian statistician, the 
chance that d is zero given the data makes good sense, but the computation via 
the t-test could be seriously in error, because the prior probability that d is zero 
has not been taken into account.156

The mathematical terminology in the previous paragraph may need to be 
deciphered: The “absolute value” of t is the magnitude, ignoring sign. Thus, the 
absolute value of both +3 and −3 is 3.

155.  See supra Section IV.B & notes 102 & 116.
156.  See supra Section IV & supra Appendix.
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Glossary of Terms
The following definitions are adapted from a variety of sources, including Michael 
O. Finkelstein & Bruce Levin, Statistics for Lawyers (2d ed. 2001), and David A. 
Freedman et al., Statistics (4th ed. 2007).

absolute value.  Size, neglecting sign. The absolute value of +2.7 is 2.7; so is the 
absolute value of -2.7.

adjust for.  See control for.

alpha (a).  A symbol often used to denote the probability of a Type I error. See 
Type I error; size. Compare beta.

alternative hypothesis.  A statistical hypothesis that is contrasted with the null 
hypothesis in a significance test. See statistical hypothesis; significance test.

area sample.  A probability sample in which the sampling frame is a list of geo-
graphical areas. That is, the researchers make a list of areas, choose some at 
random, and interview people in the selected areas. This is a cost-effective 
way to draw a sample of people. See probability sample; sampling frame.

arithmetic mean.  See mean.

average.  See mean.

Bayes’ rule.  In its simplest form, an equation involving conditional probabilities 
that relates a “prior probability” known or estimated before collecting cer-
tain data to a “posterior probability” that reflects the impact of the data on 
the prior probability. In Bayesian statistical inference, “the prior” expresses 
degrees of belief about various hypotheses. Data are collected according to 
some statistical model; at least, the model represents the investigator’s beliefs. 
Bayes’ rule combines the prior with the data to yield the posterior probability, 
which expresses the investigator’s beliefs about the parameters, given the data. 
See Appendix A. Compare frequentist.

beta (b).  A symbol sometimes used to denote power, and sometimes to denote 
the probability of a Type II error. See Type II error; power. Compare alpha.

between-observer variability.  Differences that occur when two observers 
measure the same thing. Compare within-observer variability.

bias.  Also called systematic error. A systematic tendency for an estimate to be 
too high or too low. An estimate is unbiased if the bias is zero. (Bias does not 
mean prejudice, partiality, or discriminatory intent.) See nonsampling error. 
Compare sampling error. 

bin.  A class interval in a histogram. See class interval; histogram.

binary variable.  A variable that has only two possible values (e.g., gender). 
Called a dummy variable when the two possible values are 0 and 1.

binomial distribution.  A distribution for the number of occurrences in repeated, 
independent “trials” where the probabilities are fixed. For example, the num-
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ber of heads in 100 tosses of a coin follows a binomial distribution. When 
the probability is not too close to 0 or 1 and the number of trials is large, the 
binomial distribution has about the same shape as the normal distribution. See 
normal distribution; Poisson distribution.

blind.  See double-blind experiment.

bootstrap.  Also called resampling; Monte Carlo method. A procedure for esti-
mating sampling error by constructing a simulated population on the basis of 
the sample, then repeatedly drawing samples from the simulated population.

categorical data; categorical variable.  See qualitative variable. Compare quan-
titative variable.

central limit theorem.  Shows that under suitable conditions, the probability 
histogram for a sum (or average or rate) will follow the normal curve. See 
histogram; normal curve.

chance error.  See random error; sampling error.

chi-squared (c2).  The chi-squared statistic measures the distance between the 
data and expected values computed from a statistical model. If the chi-squared 
statistic is too large to explain by chance, the data contradict the model. The 
definition of “large” depends on the context. See statistical hypothesis; sig-
nificance test.

class interval.  Also, bin. The base of a rectangle in a histogram; the area of 
the rectangle shows the percentage of observations in the class interval. See 
histogram. 

cluster sample.  A type of random sample. For example, investigators might take 
households at random, then interview all people in the selected households. 
This is a cluster sample of people: A cluster consists of all the people in a 
selected household. Generally, clustering reduces the cost of interviewing. 
See multistage cluster sample.

coefficient of determination.  A statistic (more commonly known as R-squared) 
that describes how well a regression equation fits the data. See R-squared.

coefficient of variation.  A statistic that measures spread relative to the mean: 
SD/mean, or SE/expected value. See expected value; mean; standard devia-
tion; standard error.

collinearity.  See multicollinearity.

conditional probability.  The probability that one event will occur given that 
another has occurred.

confidence coefficient.  See confidence interval.

confidence interval.  An estimate, expressed as a range, for a parameter. For 
estimates such as averages or rates computed from large samples, a 95% con-
fidence interval is the range from about two standard errors below to two 
standard errors above the estimate. Intervals obtained this way cover the true 
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value about 95% of the time, and 95% is the confidence level or the confi-
dence coefficient. See central limit theorem; standard error. 

confidence level.  See confidence interval.

confounding variable; confounder.  A confounder is correlated with the inde-
pendent variable and the dependent variable. An association between the 
dependent and independent variables in an observational study may not be 
causal, but may instead be due to confounding. See controlled experiment; 
observational study.

consistent estimator.  An estimator that tends to become more and more accu-
rate as the sample size grows. Inconsistent estimators, which do not become 
more accurate as the sample gets larger, are frowned upon by statisticians.

content validity.  The extent to which a skills test is appropriate to its intended 
purpose, as evidenced by a set of questions that adequately reflect the domain 
being tested. See validity. Compare reliability.

continuous variable.  A variable that has arbitrarily fine gradations, such as a 
person’s height. Compare discrete variable.

control for.  Statisticians may control for the effects of confounding variables in 
nonexperimental data by making comparisons for smaller and more homo-
geneous groups of subjects, or by entering the confounders as explanatory 
variables in a regression model. To “adjust for” is perhaps a better phrase 
in the regression context, because in an observational study the confound-
ing factors are not under experimental control; statistical adjustments are an 
imperfect substitute. See regression model.

control group.  See controlled experiment.

controlled experiment.  An experiment in which the investigators determine 
which subjects are put into the treatment group and which are put into the 
control group. Subjects in the treatment group are exposed by the investiga-
tors to some influence—the treatment; those in the control group are not so 
exposed. For example, in an experiment to evaluate a new drug, subjects in 
the treatment group are given the drug, and subjects in the control group are 
given some other therapy; the outcomes in the two groups are compared to 
see whether the new drug works.

		  Randomization—that is, randomly assigning subjects to each group—is 
usually the best way to ensure that any observed difference between the two 
groups comes from the treatment rather than from preexisting differences. Of 
course, in many situations, a randomized controlled experiment is impractical, 
and investigators must then rely on observational studies. Compare observa-
tional study.

convenience sample.  A nonrandom sample of units, also called a grab sample. 
Such samples are easy to take but may suffer from serious bias. Typically, mall 
samples are convenience samples.



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

286

correlation coefficient.  A number between –1 and 1 that indicates the extent of 
the linear association between two variables. Often, the correlation coefficient 
is abbreviated as r.

covariance.  A quantity that describes the statistical interrelationship of two vari-
ables. Compare correlation coefficient; standard error; variance.

covariate.  A variable that is related to other variables of primary interest in a 
study; a measured confounder; a statistical control in a regression equation.

criterion.  The variable against which an examination or other selection proce-
dure is validated. See validity.

data.  Observations or measurements, usually of units in a sample taken from a 
larger population. 

degrees of freedom.  See t-test.

dependence.  Two events are dependent when the probability of one is affected 
by the occurrence or non-occurrence of the other. Compare independence; 
dependent variable.

dependent variable. Also called outcome variable. Compare independent variable. 

descriptive statistics.  Like the mean or standard deviation, used to summarize 
data.

differential validity.  Differences in validity across different groups of subjects. 
See validity.

discrete variable.  A variable that has only a small number of possible values, 
such as the number of automobiles owned by a household. Compare con-
tinuous variable. 

distribution.  See frequency distribution; probability distribution; sampling 
distribution.

disturbance term.  A synonym for error term.

double-blind experiment.  An experiment with human subjects in which 
neither the diagnosticians nor the subjects know who is in the treatment 
group or the control group. This is accomplished by giving a placebo treat-
ment to patients in the control group. In a single-blind experiment, the 
patients do not know whether they are in treatment or control; the diagnosti-
cians have this information.

dummy variable.  Generally, a dummy variable takes only the values 0 or 1, 
and distinguishes one group of interest from another. See binary variable; 
regression model.

econometrics.  Statistical study of economic issues.

epidemiology.  Statistical study of disease or injury in human populations.
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error term.  The part of a statistical model that describes random error, i.e., the 
impact of chance factors unrelated to variables in the model. In econometrics, 
the error term is called a disturbance term.

estimator.  A sample statistic used to estimate the value of a population parameter. 
For example, the sample average commonly is used to estimate the population 
average. The term “estimator” connotes a statistical procedure, whereas an 
“estimate” connotes a particular numerical result.

expected value.  See random variable.

experiment.  See controlled experiment; randomized controlled experiment. 
Compare observational study.

explanatory variable.  See independent variable; regression model. 

external validity.  See validity.

factors.  See independent variable.

Fisher’s exact test.  A statistical test for comparing two sample proportions. For 
example, take the proportions of white and black employees getting a promo-
tion. An investigator may wish to test the null hypothesis that promotion does 
not depend on race. Fisher’s exact test is one way to arrive at a p-value. The 
calculation is based on the hypergeometric distribution. For details, see Michael 
O. Finkelstein and Bruce Levin, Statistics for Lawyers 154–56 (2d ed. 2001). 
See hypergeometric distribution; p-value; significance test; statistical hypothesis.

fitted value.  See residual.

fixed significance level.  Also alpha; size. A preset level, such as 5% or 1%; if 
the p-value of a test falls below this level, the result is deemed statistically sig-
nificant. See significance test. Compare observed significance level; p-value. 

frequency; relative frequency.  Frequency is the number of times that some-
thing occurs; relative frequency is the number of occurrences, relative to a 
total. For example, if a coin is tossed 1000 times and lands heads 517 times, 
the frequency of heads is 517; the relative frequency is 0.517, or 51.7%.

frequency distribution.  Shows how often specified values occur in a dataset. 

frequentist.  Also called objectivist. Describes statisticians who view probabilities 
as objective properties of a system that can be measured or estimated. Com-
pare Bayesian. See Appendix.

Gaussian distribution.  A synonym for the normal distribution. See normal 
distribution.

general linear model.  Expresses the dependent variable as a linear combination 
of the independent variables plus an error term whose components may be 
dependent and have differing variances. See error term; linear combination; 
variance. Compare regression model.

grab sample.  See convenience sample.
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heteroscedastic.  See scatter diagram.

highly significant.  See p-value; practical significance; significance test.

histogram.  A plot showing how observed values fall within specified intervals, 
called bins or class intervals. Generally, matters are arranged so that the area 
under the histogram, but over a class interval, gives the frequency or rela-
tive frequency of data in that interval. With a probability histogram, the area 
gives the chance of observing a value that falls in the corresponding interval.

homoscedastic.  See scatter diagram.

hypergeometric distribution.  Suppose a sample is drawn at random, without 
replacement, from a finite population. How many times will items of a certain 
type come into the sample? The hypergeometric distribution gives the proba-
bilities. For more details, see 1 William Feller, An Introduction to Probability 
Theory and Its Applications 41–42 (2d ed. 1957). Compare Fisher’s exact test.

hypothesis.  See alternative hypothesis; null hypothesis; one-sided hypothesis; 
significance test; statistical hypothesis; two-sided hypothesis.

hypothesis test.  See significance test.

identically distributed.  Random variables are identically distributed when they 
have the same probability distribution. For example, consider a box of num-
bered tickets. Draw tickets at random with replacement from the box. The 
draws will be independent and identically distributed.

independence.  Also, statistical independence. Events are independent when 
the probability of one is unaffected by the occurrence or non-occurrence 
of the other. Compare conditional probability; dependence; independent 
variable; dependent variable.

independent variable.  Independent variables (also called explanatory variables, 
predictors, or risk factors) represent the causes and potential confounders in 
a statistical study of causation; the dependent variable represents the effect. 
In an observational study, independent variables may be used to divide the 
population up into smaller and more homogenous groups (“stratification”). 
In a regression model, the independent variables are used to predict the 
dependent variable. For example, the unemployment rate has been used 
as the independent variable in a model for predicting the crime rate; the 
unemployment rate is the independent variable in this model, and the crime 
rate is the dependent variable. The distinction between independent and 
dependent variables is unrelated to statistical independence. See regression 
model. Compare dependent variable; dependence; independence.

indicator variable.  See dummy variable. 

internal validity.  See validity.

interquartile range.  Difference between 25th and 75th percentile. See percentile.
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interval estimate.  A confidence interval, or an estimate coupled with a standard 
error. See confidence interval; standard error. Compare point estimate.

least squares.  See least squares estimator; regression model.

least squares estimator.  An estimator that is computed by minimizing the sum 
of the squared residuals. See residual. 

level.  The level of a significance test is denoted alpha (a). See alpha; fixed sig-
nificance level; observed significance level; p-value; significance test.

linear combination.  To obtain a linear combination of two variables, multiply 
the first variable by some constant, multiply the second variable by another 
constant, and add the two products. For example, 2u + 3v is a linear com-
bination of u and v. 

list sample.  See systematic sample.

loss function.  Statisticians may evaluate estimators according to a mathematical 
formula involving the errors—that is, differences between actual values and 
estimated values. The “loss” may be the total of the squared errors, or the 
total of the absolute errors, etc. Loss functions seldom quantify real losses, but 
may be useful summary statistics and may prompt the construction of useful 
statistical procedures. Compare risk.

lurking variable.  See confounding variable.

mean.  Also, the average; the expected value of a random variable. The mean 
gives a way to find the center of a batch of numbers: Add the numbers and 
divide by how many there are. Weights may be employed, as in “weighted 
mean” or “weighted average.” See random variable. Compare median; mode. 

measurement validity.  See validity. Compare reliability.

median.  The median, like the mean, is a way to find the center of a batch of 
numbers. The median is the 50th percentile. Half the numbers are larger, 
and half are smaller. (To be very precise: at least half the numbers are greater 
than or equal to the median; At least half the numbers are less than or equal 
to the median; for small datasets, the median may not be uniquely defined.) 
Compare mean; mode; percentile.

meta-analysis.  Attempts to combine information from all studies on a certain 
topic. For example, in the epidemiological context, a meta-analysis may 
attempt to provide a summary odds ratio and confidence interval for the effect 
of a certain exposure on a certain disease.

mode.  The most common value. Compare mean; median.

model.  See probability model; regression model; statistical model.

multicollinearity.  Also, collinearity. The existence of correlations among the 
independent variables in a regression model. See independent variable; regres-
sion model.
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multiple comparison. Making several statistical tests on the same dataset. 
Multiple comparisons complicate the interpretation of a p-value. For example, 
if 20 divisions of a company are examined, and one division is found to have 
a disparity significant at the 5% level, the result is not surprising; indeed, it 
would be expected under the null hypothesis. Compare p-value; significance 
test; statistical hypothesis.

multiple correlation coefficient.  A number that indicates the extent to which 
one variable can be predicted as a linear combination of other variables. 
Its magnitude is the square root of R-squared. See linear combination; 
R-squared; regression model. Compare correlation coefficient.

multiple regression.  A regression equation that includes two or more indepen-
dent variables. See regression model. Compare simple regression.

multistage cluster sample.  A probability sample drawn in stages, usually after 
stratification; the last stage will involve drawing a cluster. See cluster sample; 
probability sample; stratified random sample.

multivariate methods.  Methods for fitting models with multiple variables; in 
statistics, multiple response variables; in other fields, multiple explanatory 
variables. See regression model.

natural experiment.  An observational study in which treatment and control 
groups have been formed by some natural development; the assignment of 
subjects to groups is akin to randomization. See observational study. Compare 
controlled experiment.

nonresponse bias.  Systematic error created by differences between respondents 
and nonrespondents. If the nonresponse rate is high, this bias may be severe.

nonsampling error.  A catch-all term for sources of error in a survey, other 
than sampling error. Nonsampling errors cause bias. One example is selection 
bias: The sample is drawn in a way that tends to exclude certain subgroups in 
the population. A second example is nonresponse bias: People who do not 
respond to a survey are usually different from respondents. A final example: 
Response bias arises, for example, if the interviewer uses a loaded question.

normal distribution.  Also, Gaussian distribution. When the normal distribution 
has mean equal to 0 and standard error equal to 1, it is said to be “standard 
normal.” The equation for the density is then

	

	 y e x= − 2 2 2/ / π
	
	 where e = 2.71828. . . and p = 3.14159. . . . The density can be rescaled to 

have any desired mean and standard error, resulting in the famous “bell-
shaped curves” of statistical theory. Terminology notwithstanding, there need 
be nothing wrong with a distribution that differs from normal.
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null hypothesis.  For example, a hypothesis that there is no difference between 
two groups from which samples are drawn. See significance test; statistical 
hypothesis. Compare alternative hypothesis. 

objectivist.  See frequentist.

observational study.  A study in which subjects select themselves into groups; 
investigators then compare the outcomes for the different groups. For exam-
ple, studies of smoking are generally observational. Subjects decide whether 
or not to smoke; the investigators compare the death rate for smokers to the 
death rate for nonsmokers. In an observational study, the groups may differ 
in important ways that the investigators do not notice; controlled experi-
ments minimize this problem. The critical distinction is that in a controlled 
experiment, the investigators intervene to manipulate the circumstances of 
the subjects; in an observational study, the investigators are passive observers. 
(Of course, running a good observational study is hard work, and may be 
quite useful.) Compare confounding variable; controlled experiment.

observed significance level.  A synonym for p-value. See significance test. 
Compare fixed significance level.

odds.  The probability that an event will occur divided by the probability that it 
will not. For example, if the chance of rain tomorrow is 2/3, then the odds 
on rain are (2/3)/(1/3) = 2/1, or 2 to 1; the odds against rain are 1 to 2.

odds ratio.  A measure of association, often used in epidemiology. For example, if 
10% of all people exposed to a chemical develop a disease, compared with 5% 
of people who are not exposed, then the odds of the disease in the exposed 
group are 10/90 = 1/9, compared with 5/95 = 1/19 in the unexposed group. 
The odds ratio is (1/9)/(1/19) = 19/9 = 2.1. An odds ratio of 1 indicates no 
association. Compare relative risk.

one-sided hypothesis; one-tailed hypothesis.  Excludes the possibility that 
a parameter could be, for example, less than the value asserted in the null 
hypothesis. A one-sided hypothesis leads to a one-sided (or one-tailed) test. 
See significance test; statistical hypothesis; compare two-sided hypothesis. 

one-sided test; one-tailed test.  See one-sided hypothesis. 

outcome variable.  See dependent variable.

outlier.  An observation that is far removed from the bulk of the data. Outliers 
may indicate faulty measurements and they may exert undue influence on 
summary statistics, such as the mean or the correlation coefficient.

p-value.  Result from a statistical test. The probability of getting, just by chance, 
a test statistic as large as or larger than the observed value. Large p-values 
are consistent with the null hypothesis; small p-values undermine the null 
hypothesis. However, p does not give the probability that the null hypothesis 
is true. If p is smaller than 5%, the result is statistically significant. If p is smaller 
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than 1%, the result is highly significant. The p-value is also called the observed 
significance level. See significance test; statistical hypothesis.

parameter.  A numerical characteristic of a population or a model. See prob-
ability model.

percentile.  To get the percentiles of a dataset, array the data from the smallest 
value to the largest. Take the 90th percentile by way of example: 90% of the 
values fall below the 90th percentile, and 10% are above. (To be very precise: 
At least 90% of the data are at the 90th percentile or below; at least 10% of the 
data are at the 90th percentile or above.) The 50th percentile is the median: 
50% of the values fall below the median, and 50% are above. On the LSAT, 
a score of 152 places a test taker at the 50th percentile; a score of 164 is at 
the 90th percentile; a score of 172 is at the 99th percentile. Compare mean; 
median; quartile. 

placebo.  See double-blind experiment.

point estimate.  An estimate of the value of a quantity expressed as a single num-
ber. See estimator. Compare confidence interval; interval estimate.

Poisson distribution.  A limiting case of the binomial distribution, when the 
number of trials is large and the common probability is small. The parameter 
of the approximating Poisson distribution is the number of trials times the 
common probability, which is the expected number of events. When this 
number is large, the Poisson distribution may be approximated by a normal 
distribution.

population.  Also, universe. All the units of interest to the researcher. Compare 
sample; sampling frame. 

population size.  Also, size of population. Number of units in the population.

posterior probability.  See Bayes’ rule.

power.  The probability that a statistical test will reject the null hypothesis. To 
compute power, one has to fix the size of the test and specify parameter values 
outside the range given by the null hypothesis. A powerful test has a good 
chance of detecting an effect when there is an effect to be detected. See beta; 
significance test. Compare alpha; size; p-value.

practical significance.  Substantive importance. Statistical significance does not 
necessarily establish practical significance. With large samples, small differ-
ences can be statistically significant. See significance test. 

practice effects.  Changes in test scores that result from taking the same test 
twice in succession, or taking two similar tests one after the other.

predicted value.  See residual. 

predictive validity.  A skills test has predictive validity to the extent that test 
scores are well correlated with later performance, or more generally with 
outcomes that the test is intended to predict. See validity. Compare reliability.
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predictor.  See independent variable.

prior probability.  See Bayes’ rule.

probability.  Chance, on a scale from 0 to 1. Impossibility is represented by 0, 
certainty by 1. Equivalently, chances may be quoted in percent; 100% cor-
responds to 1, 5% corresponds to .05, and so forth.

probability density.  Describes the probability distribution of a random variable. 
The chance that the random variable falls in an interval equals the area below 
the density and above the interval. (However, not all random variables have 
densities.) See probability distribution; random variable.

probability distribution.  Gives probabilities for possible values or ranges of 
values of a random variable. Often, the distribution is described in terms of a 
density. See probability density.

probability histogram.  See histogram.

probability model.  Relates probabilities of outcomes to parameters; also, statis-
tical model. The latter connotes unknown parameters.

probability sample.  A sample drawn from a sampling frame by some objective 
chance mechanism; each unit has a known probability of being sampled. Such 
samples minimize selection bias, but can be expensive to draw.

psychometrics.  The study of psychological measurement and testing.

qualitative variable; quantitative variable.  Describes qualitative features of 
subjects in a study (e.g., marital status—never-married, married, widowed, 
divorced, separated). A quantitative variable describes numerical features 
of the subjects (e.g., height, weight, income). This is not a hard-and-fast 
distinction, because qualitative features may be given numerical codes, as 
with a dummy variable. Quantitative variables may be classified as discrete 
or continuous. Concepts such as the mean and the standard deviation apply 
only to quantitative variables. Compare continuous variable; discrete variable; 
dummy variable. See variable.

quartile.  The 25th or 75th percentile. See percentile. Compare median.

R-squared (R2).  Measures how well a regression equation fits the data. R-squared 
varies between 0 (no fit) and 1 (perfect fit). R-squared does not measure the 
extent to which underlying assumptions are justified. See regression model. 
Compare multiple correlation coefficient; standard error of regression.

random error.  Sources of error that are random in their effect, like draws made 
at random from a box. These are reflected in the error term of a statistical 
model. Some authors refer to random error as chance error or sampling error. 
See regression model.

random variable.  A variable whose possible values occur according to some 
probability mechanism. For example, if a pair of dice are thrown, the total 
number of spots is a random variable. The chance of two spots is 1/36, the 
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chance of three spots is 2/36, and so forth; the most likely number is 7, with 
chance 6/36.

		  The expected value of a random variable is the weighted average of 
the possible values; the weights are the probabilities. In our example, the 
expected value is

	

1
36

2
2
36

3
3
36

4
5
36

6
6
36

7

5
36

8
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36

9
3

× + × + × + × + ×

+ × + × +
336

10
2
36

11
1
36

12× + × + ×

	 In many problems, the weighted average is computed with respect to the 
density; then sums must be replaced by integrals. The expected value need 
not be a possible value for the random variable.

		  Generally, a random variable will be somewhere around its expected value, 
but will be off (in either direction) by something like a standard error (SE) 
or so. If the random variable has a more or less normal distribution, there is 
about a 68% chance for it to fall in the range expected value – SE to expected 
value + SE. See normal curve; standard error. 

randomization.  See controlled experiment; randomized controlled experiment.

randomized controlled experiment.  A controlled experiment in which sub-
jects are placed into the treatment and control groups at random—as if by a 
lottery. See controlled experiment. Compare observational study.

range.  The difference between the biggest and the smallest values in a batch of 
numbers.

rate.  In an epidemiological study, the number of events, divided by the size of 
the population; often cross-classified by age and gender. For example, the 
death rate from heart disease among American men ages 55–64 in 2004 was 
about three per thousand. Among men ages 65–74, the rate was about seven 
per thousand. Among women, the rate was about half that for men. Rates 
adjust for differences in sizes of populations or subpopulations. Often, rates 
are computed per unit of time, e.g., per thousand persons per year. Data 
source: Statistical Abstract of the United States tbl. 115 (2008). 

regression coefficient.  The coefficient of a variable in a regression equation. 
See regression model.

regression diagnostics.  Procedures intended to check whether the assumptions 
of a regression model are appropriate.

regression equation.  See regression model. 

regression line.  The graph of a (simple) regression equation. 

regression model.  A regression model attempts to combine the values of certain 
variables (the independent or explanatory variables) in order to get expected 
values for another variable (the dependent variable). Sometimes, the phrase 
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“regression model” refers to a probability model for the data; if no qualifica-
tions are made, the model will generally be linear, and errors will be assumed 
independent across observations, with common variance, The coefficients in 
the linear combination are called regression coefficients; these are parameters. 
At times, “regression model” refers to an equation (“the regression equation”) 
estimated from data, typically by least squares.

		  For example, in a regression study of salary differences between men and 
women in a firm, the analyst may include a dummy variable for gender, 
as well as statistical controls such as education and experience to adjust for 
productivity differences between men and women. The dummy variable 
would be defined as 1 for the men and 0 for the women. Salary would be 
the dependent variable; education, experience, and the dummy would be the 
independent variables. See least squares; multiple regression; random error; 
variance. Compare general linear model. 

relative frequency.  See frequency.

relative risk.  A measure of association used in epidemiology. For example, if 
10% of all people exposed to a chemical develop a disease, compared to 5% 
of people who are not exposed, then the disease occurs twice as frequently 
among the exposed people: The relative risk is 10%/5% = 2. A relative risk of 
1 indicates no association. For more details, see Leon Gordis, Epidemiology 
(4th ed. 2008). Compare odds ratio.

reliability.  The extent to which a measurement process gives the same results on 
repeated measurement of the same thing. Compare validity.

representative sample.  Not a well-defined technical term. A sample judged to 
fairly represent the population, or a sample drawn by a process likely to give 
samples that fairly represent the population, for example, a large probability 
sample.

resampling.  See bootstrap.

residual.  The difference between an actual and a predicted value. The predicted 
value comes typically from a regression equation, and is better called the fit-
ted value, because there is no real prediction going on. See regression model; 
independent variable.

response variable.  See independent variable.

risk.  Expected loss. “Expected” means on average, over the various datasets that 
could be generated by the statistical model under examination. Usually, risk 
cannot be computed exactly but has to be estimated, because the parameters 
in the statistical model are unknown and must be estimated. See loss func-
tion; random variable. 

risk factor.  See independent variable.

robust.  A statistic or procedure that does not change much when data or assump-
tions are modified slightly.
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sample.  A set of units collected for study. Compare population. 

sample size.  Also, size of sample. The number of units in a sample.

sample weights.  See stratified random sample.

sampling distribution.  The distribution of the values of a statistic, over all pos-
sible samples from a population. For example, suppose a random sample is 
drawn. Some values of the sample mean are more likely; others are less likely. 
The sampling distribution specifies the chance that the sample mean will fall 
in one interval rather than another.

sampling error.  A sample is part of a population. When a sample is used to 
estimate a numerical characteristic of the population, the estimate is likely to 
differ from the population value because the sample is not a perfect micro-
cosm of the whole. If the estimate is unbiased, the difference between the 
estimate and the exact value is sampling error. More generally, 

	 estimate = true value + bias + sampling error

	 Sampling error is also called chance error or random error. See standard error. 
Compare bias; nonsampling error.

sampling frame.  A list of units designed to represent the entire population as 
completely as possible. The sample is drawn from the frame. 

sampling interval.  See systematic sample.

scatter diagram.  Also, scatterplot; scattergram. A graph showing the relation-
ship between two variables in a study. Each dot represents one subject. One 
variable is plotted along the horizontal axis, the other variable is plotted along 
the vertical axis. A scatter diagram is homoscedastic when the spread is more 
or less the same inside any vertical strip. If the spread changes from one strip 
to another, the diagram is heteroscedastic.

selection bias.  Systematic error due to nonrandom selection of subjects for 
study.

sensitivity.  In clinical medicine, the probability that a test for a disease will give 
a positive result given that the patient has the disease. Sensitivity is analogous 
to the power of a statistical test. Compare specificity.

sensitivity analysis.  Analyzing data in different ways to see how results depend 
on methods or assumptions. 

sign test.  A statistical test based on counting and the binomial distribution. For 
example, a Finnish study of twins found 22 monozygotic twin pairs where 
1 twin smoked, 1 did not, and at least 1 of the twins had died. That sets up 
a race to death. In 17 cases, the smoker died first; in 5 cases, the nonsmoker 
died first. The null hypothesis is that smoking does not affect time to death, 
so the chances are 50-50 for the smoker to die first. On the null hypothesis, 
the chance that the smoker will win the race 17 or more times out of 22 is 
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8/1000. That is the p-value. The p-value can be computed from the binomial 
distribution. For additional detail, see Michael O. Finkelstein & Bruce Levin, 
Statistics for Lawyers 339–41 (2d ed. 2001); David A. Freedman et al., 
Statistics 262–63 (4th ed. 2007).

significance level.  See fixed significance level; p-value.

significance test.  Also, statistical test; hypothesis test; test of significance. A signifi-
cance test involves formulating a statistical hypothesis and a test statistic, com-
puting a p-value, and comparing p to some preestablished value (α) to decide 
if the test statistic is significant. The idea is to see whether the data conform 
to the predictions of the null hypothesis. Generally, a large test statistic goes 
with a small p-value; and small p-values would undermine the null hypothesis.

		  For example, suppose that a random sample of male and female employees 
were given a skills test and the mean scores of the men and women were 
different—in the sample. To judge whether the difference is due to sampling 
error, a statistician might consider the implications of competing hypotheses 
about the difference in the population. The null hypothesis would say that 
on average, in the population, men and women have the same scores: The 
difference observed in the data is then just due to sampling error. A one-sided 
alternative hypothesis would be that on average, in the population, men score 
higher than women. The one-sided test would reject the null hypothesis if 
the sample men score substantially higher than the women—so much so that 
the difference is hard to explain on the basis of sampling error.

		  In contrast, the null hypothesis could be tested against the two-sided 
alternative that on average, in the population, men score differently than 
women—higher or lower. The corresponding two-sided test would reject the 
null hypothesis if the sample men score substantially higher or substantially 
lower than the women.

		  The one-sided and two-sided tests would both be based on the same 
data, and use the same t-statistic. However, if the men in the sample score 
higher than the women, the one-sided test would give a p-value only half as 
large as the two-sided test; that is, the one-sided test would appear to give 
stronger evidence against the null hypothesis. (“One-sided” and “one-tailed” 
are synonymous; so are “two-sided and “two-tailed.”) See p-value; statistical 
hypothesis; t-statistic.

significant.  See p-value; practical significance; significance test.

simple random sample.  A random sample in which each unit in the sampling 
frame has the same chance of being sampled. The investigators take a unit at 
random (as if by lottery), set it aside, take another at random from what is 
left, and so forth.

simple regression.  A regression equation that includes only one independent 
variable. Compare multiple regression. 

size.  A synonym for alpha (a).
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skip factor.  See systematic sample.

specificity.  In clinical medicine, the probability that a test for a disease will give 
a negative result given that the patient does not have the disease. Specificity 
is analogous to 1 – a, where a is the significance level of a statistical test. 
Compare sensitivity. 

spurious correlation.  When two variables are correlated, one is not necessarily 
the cause of the other. The vocabulary and shoe size of children in elementary 
school, for example, are correlated—but learning more words will not make 
the feet grow. Such noncausal correlations are said to be spurious. (Originally, 
the term seems to have been applied to the correlation between two rates with 
the same denominator: Even if the numerators are unrelated, the common 
denominator will create some association.) Compare confounding variable.

standard deviation (SD).  Indicates how far a typical element deviates from the 
average. For example, in round numbers, the average height of women age 
18 and over in the United States is 5 feet 4 inches. However, few women 
are exactly average; most will deviate from average, at least by a little. The 
SD is sort of an average deviation from average. For the height distribution, 
the SD is 3 inches. The height of a typical woman is around 5 feet 4 inches, 
but is off that average value by something like 3 inches.

		  For distributions that follow the normal curve, about 68% of the elements 
are in the range from 1 SD below the average to 1 SD above the average. 
Thus, about 68% of women have heights in the range 5 feet 1 inch to 5 feet 
7 inches. Deviations from the average that exceed 3 or 4 SDs are extremely 
unusual. Many authors use standard deviation to also mean standard error. 
See standard error.

standard error (SE).  Indicates the likely size of the sampling error in an esti-
mate. Many authors use the term standard deviation instead of standard error. 
Compare expected value; standard deviation.

standard error of regression.  Indicates how actual values differ (in some aver-
age sense) from the fitted values in a regression model. See regression model; 
residual. Compare R-squared.

standard normal.  See normal distribution.

standardization.  See standardized variable.

standardized variable.  Transformed to have mean zero and variance one. This 
involves two steps: (1) subtract the mean; (2) divide by the standard deviation.

statistic.  A number that summarizes data. A statistic refers to a sample; a parameter 
or a true value refers to a population or a probability model.

statistical controls.  Procedures that try to filter out the effects of confounding 
variables on non-experimental data, for example, by adjusting through statisti-
cal procedures such as multiple regression. Variables in a multiple regression 
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equation. See multiple regression; confounding variable; observational study. 
Compare controlled experiment.

statistical dependence.  See dependence.

statistical hypothesis.  Generally, a statement about parameters in a probability 
model for the data. The null hypothesis may assert that certain parameters have 
specified values or fall in specified ranges; the alternative hypothesis would 
specify other values or ranges. The null hypothesis is tested against the data with 
a test statistic; the null hypothesis may be rejected if there is a statistically sig-
nificant difference between the data and the predictions of the null hypothesis.

		  Typically, the investigator seeks to demonstrate the alternative hypothesis; 
the null hypothesis would explain the findings as a result of mere chance, 
and the investigator uses a significance test to rule out that possibility. See 
significance test.

statistical independence.  See independence.

statistical model.  See probability model.

statistical test.  See significance test.

statistical significance.  See p-value.

stratified random sample.  A type of probability sample. The researcher divides 
the population into relatively homogeneous groups called “strata,” and draws 
a random sample separately from each stratum. Dividing the population into 
strata is called “stratification.” Often the sampling fraction will vary from 
stratum to stratum. Then sampling weights should be used to extrapolate 
from the sample to the population. For example, if 1 unit in 10 is sampled 
from stratum A while 1 unit in 100 is sampled from stratum B, then each unit 
drawn from A counts as 10, and each unit drawn from B counts as 100. The 
first kind of unit has weight 10; the second has weight 100. See Freedman et 
al., Statistics 401 (4th ed. 2007).

stratification.  See independent variable; stratified random sample.

study validity.  See validity.

subjectivist.  See Bayesian.

systematic error.  See bias.

systematic sample.  Also, list sample. The elements of the population are num-
bered consecutively as 1, 2, 3, . . . . The investigators choose a starting point 
and a “sampling interval” or “skip factor” k. Then, every kth element is 
selected into the sample. If the starting point is 1 and k = 10, for example, the 
sample would consist of items 1, 11, 21, . . . . Sometimes the starting point 
is chosen at random from 1 to k: this is a random-start systematic sample.

t-statistic.  A test statistic, used to make the t-test. The t-statistic indicates how 
far away an estimate is from its expected value, relative to the standard error. 
The expected value is computed using the null hypothesis that is being tested. 
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Some authors refer to the t-statistic, others to the z-statistic, especially when 
the sample is large. With a large sample, a t-statistic larger than 2 or 3 in abso-
lute value makes the null hypothesis rather implausible—the estimate is too 
many standard errors away from its expected value. See statistical hypothesis; 
significance test; t-test.

t-test.  A statistical test based on the t-statistic. Large t-statistics are beyond the 
usual range of sampling error. For example, if t is bigger than 2, or smaller 
than –2, then the estimate is statistically significant at the 5% level; such values 
of t are hard to explain on the basis of sampling error. The scale for t-statistics 
is tied to areas under the normal curve. For example, a t-statistic of 1.5 is not 
very striking, because 13% = 13/100 of the area under the normal curve is 
outside the range from –1.5 to 1.5. On the other hand, t = 3 is remarkable: 
Only 3/1000 of the area lies outside the range from –3 to 3. This discussion is 
predicated on having a reasonably large sample; in that context, many authors 
refer to the z-test rather than the t-test.

		  Consider testing the null hypothesis that the average of a population equals 
a given value; the population is known to be normal. For small samples, the 
t-statistic follows Student’s t-distribution (when the null hypothesis holds) 
rather than the normal curve; larger values of t are required to achieve sig-
nificance. The relevant t-distribution depends on the number of degrees of 
freedom, which in this context equals the sample size minus one. A t-test is 
not appropriate for small samples drawn from a population that is not normal. 
See p-value; significance test; statistical hypothesis.

test statistic.  A statistic used to judge whether data conform to the null hypoth-
esis. The parameters of a probability model determine expected values for the 
data; differences between expected values and observed values are measured 
by a test statistic. Such test statistics include the chi-squared statistic (c2) and 
the t-statistic. Generally, small values of the test statistic are consistent with 
the null hypothesis; large values lead to rejection. See p-value; statistical 
hypothesis; t-statistic.

time series.  A series of data collected over time, for example, the Gross National 
Product of the United States from 1945 to 2005.

treatment group.  See controlled experiment. 

two-sided hypothesis; two-tailed hypothesis.  An alternative hypothesis 
asserting that the values of a parameter are different from—either greater than 
or less than—the value asserted in the null hypothesis. A two-sided alterna-
tive hypothesis suggests a two-sided (or two-tailed) test. See significance test; 
statistical hypothesis. Compare one-sided hypothesis.

two-sided test; two-tailed test.  See two-sided hypothesis.

Type I error.  A statistical test makes a Type I error when (1) the null hypothesis 
is true and (2) the test rejects the null hypothesis, i.e., there is a false posi-
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tive. For example, a study of two groups may show some difference between 
samples from each group, even when there is no difference in the population. 
When a statistical test deems the difference to be significant in this situation, 
it makes a Type I error. See significance test; statistical hypothesis. Compare 
alpha; Type II error.

Type II error.  A statistical test makes a Type II error when (1) the null hypoth-
esis is false and (2) the test fails to reject the null hypothesis, i.e., there is a 
false negative. For example, there may not be a significant difference between 
samples from two groups when, in fact, the groups are different. See signifi-
cance test; statistical hypothesis. Compare beta; Type I error.

unbiased estimator.  An estimator that is correct on average, over the pos-
sible datasets. The estimates have no systematic tendency to be high or low. 
Compare bias.

uniform distribution.  For example, a whole number picked at random from 1 
to 100 has the uniform distribution: All values are equally likely. Similarly, a 
uniform distribution is obtained by picking a real number at random between 
0.75 and 3.25: The chance of landing in an interval is proportional to the 
length of the interval. 

validity.  Measurement validity is the extent to which an instrument measures 
what it is supposed to, rather than something else. The validity of a standard-
ized test is often indicated by the correlation coefficient between the test 
scores and some outcome measure (the criterion variable). See content valid-
ity; differential validity; predictive validity. Compare reliability.

		  Study validity is the extent to which results from a study can be relied 
upon. Study validity has two aspects, internal and external. A study has high 
internal validity when its conclusions hold under the particular circumstances 
of the study. A study has high external validity when its results are gener-
alizable. For example, a well-executed randomized controlled double-blind 
experiment performed on an unusual study population will have high internal 
validity because the design is good; but its external validity will be debatable 
because the study population is unusual. 

		  Validity is used also in its ordinary sense: assumptions are valid when they 
hold true for the situation at hand.

variable.  A property of units in a study, which varies from one unit to another, 
for example, in a study of households, household income; in a study of 
people, employment status (employed, unemployed, not in labor force).

variance.  The square of the standard deviation. Compare standard error; covariance.

weights.  See stratified random sample. 

within-observer variability.  Differences that occur when an observer measures 
the same thing twice, or measures two things that are virtually the same. 
Compare between-observer variability.
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z-statistic.  See t-statistic.

z-test.  See t-test.
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I. Introduction and Overview
Multiple regression analysis is a statistical tool used to understand the relationship 
between or among two or more variables.1 Multiple regression involves a variable 
to be explained—called the dependent variable—and additional explanatory vari-
ables that are thought to produce or be associated with changes in the dependent 
variable.2 For example, a multiple regression analysis might estimate the effect of 
the number of years of work on salary. Salary would be the dependent variable to 
be explained; the years of experience would be the explanatory variable.

Multiple regression analysis is sometimes well suited to the analysis of data 
about competing theories for which there are several possible explanations for the 
relationships among a number of explanatory variables.3 Multiple regression typi-
cally uses a single dependent variable and several explanatory variables to assess the 
statistical data pertinent to these theories. In a case alleging sex discrimination in 
salaries, for example, a multiple regression analysis would examine not only sex, 
but also other explanatory variables of interest, such as education and experience.4 
The employer-defendant might use multiple regression to argue that salary is a 
function of the employee’s education and experience, and the employee-plaintiff 
might argue that salary is also a function of the individual’s sex. Alternatively, 
in an antitrust cartel damages case, the plaintiff’s expert might utilize multiple 
regression to evaluate the extent to which the price of a product increased dur-
ing the period in which the cartel was effective, after accounting for costs and 
other variables unrelated to the cartel. The defendant’s expert might use multiple 

1.  A variable is anything that can take on two or more values (e.g., the daily temperature in 
Chicago or the salaries of workers at a factory).

2.  Explanatory variables in the context of a statistical study are sometimes called independent 
variables. See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section II.A.1, 
in this manual. The guide also offers a brief discussion of multiple regression analysis. Id., Section V.

3.  Multiple regression is one type of statistical analysis involving several variables. Other types 
include matching analysis, stratification, analysis of variance, probit analysis, logit analysis, discriminant 
analysis, and factor analysis.

4.  Thus, in Ottaviani v. State University of New York, 875 F.2d 365, 367 (2d Cir. 1989) (citations 
omitted), cert. denied, 493 U.S. 1021 (1990), the court stated:

In disparate treatment cases involving claims of gender discrimination, plaintiffs typically use multiple 
regression analysis to isolate the influence of gender on employment decisions relating to a particular 
job or job benefit, such as salary.

The first step in such a regression analysis is to specify all of the possible “legitimate” (i.e., non-
discriminatory) factors that are likely to significantly affect the dependent variable and which could 
account for disparities in the treatment of male and female employees. By identifying those legitimate 
criteria that affect the decisionmaking process, individual plaintiffs can make predictions about what job 
or job benefits similarly situated employees should ideally receive, and then can measure the difference 
between the predicted treatment and the actual treatment of those employees. If there is a disparity 
between the predicted and actual outcomes for female employees, plaintiffs in a disparate treatment 
case can argue that the net “residual” difference represents the unlawful effect of discriminatory animus 
on the allocation of jobs or job benefits.
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regression to suggest that the plaintiff’s expert had omitted a number of price-
determining variables.

More generally, multiple regression may be useful (1) in determining whether 
a particular effect is present; (2) in measuring the magnitude of a particular effect; 
and (3) in forecasting what a particular effect would be, but for an intervening 
event. In a patent infringement case, for example, a multiple regression analysis 
could be used to determine (1) whether the behavior of the alleged infringer 
affected the price of the patented product, (2) the size of the effect, and (3) what 
the price of the product would have been had the alleged infringement not 
occurred.

Over the past several decades, the use of multiple regression analysis in court 
has grown widely. Regression analysis has been used most frequently in cases of 
sex and race discrimination5 antitrust violations,6 and cases involving class cer-

5.  Discrimination cases using multiple regression analysis are legion. See, e.g., Bazemore v. 
Friday, 478 U.S. 385 (1986), on remand, 848 F.2d 476 (4th Cir. 1988); Csicseri v. Bowsher, 862 F. 
Supp. 547 (D.D.C. 1994) (age discrimination), aff’d, 67 F.3d 972 (D.C. Cir. 1995); EEOC v. General 
Tel. Co., 885 F.2d 575 (9th Cir. 1989), cert. denied, 498 U.S. 950 (1990); Bridgeport Guardians, Inc. 
v. City of Bridgeport, 735 F. Supp. 1126 (D. Conn. 1990), aff’d, 933 F.2d 1140 (2d Cir.), cert. denied, 
502 U.S. 924 (1991); Bickerstaff v. Vassar College, 196 F.3d 435, 448–49 (2d Cir. 1999) (sex dis-
crimination); McReynolds v. Sodexho Marriott, 349 F. Supp. 2d 1 (D.C. Cir. 2004) (race discrimina-
tion); Hnot v. Willis Group Holdings Ltd., 228 F.R.D. 476 (S.D.N.Y. 2005) (gender discrimination); 
Carpenter v. Boeing Co., 456 F.3d 1183 (10th Cir. 2006) (sex discrimination); Coward v. ADT 
Security Systems, Inc., 140 F.3d 271, 274–75 (D.C. Cir. 1998); Smith v. Virginia Commonwealth 
Univ., 84 F.3d 672 (4th Cir. 1996) (en banc); Hemmings v. Tidyman’s Inc., 285 F.3d 1174, 1184–86 
(9th Cir. 2000); Mehus v. Emporia State University, 222 F.R.D. 455 (D. Kan. 2004) (sex discrimina-
tion); Guiterrez v. Johnson & Johnson, 2006 WL 3246605 (D.N.J. Nov. 6, 2006 (race discrimination); 
Morgan v. United Parcel Service, 380 F.3d 459 (8th Cir. 2004) (racial discrimination). See also Keith 
N. Hylton & Vincent D. Rougeau, Lending Discrimination: Economic Theory, Econometric Evidence, and 
the Community Reinvestment Act, 85 Geo. L.J. 237, 238 (1996) (“regression analysis is probably the best 
empirical tool for uncovering discrimination”).

6.  E.g., United States v. Brown Univ., 805 F. Supp. 288 (E.D. Pa. 1992) (price fixing of college 
scholarships), rev’d, 5 F.3d 658 (3d Cir. 1993); Petruzzi’s IGA Supermarkets, Inc. v. Darling-Delaware 
Co., 998 F.2d 1224 (3d Cir.), cert. denied, 510 U.S. 994 (1993); Ohio v. Louis Trauth Dairy, Inc., 
925 F. Supp. 1247 (S.D. Ohio 1996); In re Chicken Antitrust Litig., 560 F. Supp. 963, 993 (N.D. Ga. 
1980); New York v. Kraft Gen. Foods, Inc., 926 F. Supp. 321 (S.D.N.Y. 1995); Freeland v. AT&T, 
238 F.R.D. 130 (S.D.N.Y. 2006); In re Pressure Sensitive Labelstock Antitrust Litig., 2007 U.S. Dist. 
LEXIS 85466 (M.D. Pa. Nov. 19, 2007); In re Linerboard Antitrust Litig., 497 F. Supp. 2d 666 (E.D. 
Pa. 2007) (price fixing by manufacturers of corrugated boards and boxes); In re Polypropylene Carpet 
Antitrust Litig., 93 F. Supp. 2d 1348 (N.D. Ga. 2000); In re OSB Antitrust Litig., 2007 WL 2253418 
(E.D. Pa. Aug. 3, 2007) (price fixing of Oriented Strand Board, also known as “waferboard”); In re 
TFT-LCD (Flat Panel) Antitrust Litig., 267 F.R.D. 583 (N.D. Cal. 2010).

For a broad overview of the use of regression methods in antitrust, see ABA Antitrust Section, 
Econometrics: Legal, Practical and Technical Issues (John Harkrider & Daniel Rubinfeld, eds. 2005). 
See also Jerry Hausman et al., Competitive Analysis with Differenciated Products, 34 Annales D’Économie 
et de Statistique 159 (1994); Gregory J. Werden, Simulating the Effects of Differentiated Products Mergers: 
A Practical Alternative to Structural Merger Policy, 5 Geo. Mason L. Rev. 363 (1997).
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tification (under Rule 23).7 However, there are a range of other applications, 
including census undercounts,8 voting rights,9 the study of the deterrent effect of 
the death penalty,10 rate regulation,11 and intellectual property.12 

7.  In antitrust, the circuits are currently split as to the extent to which plaintiffs must prove 
that common elements predominate over individual elements. E.g., compare In Re Hydrogen Peroxide 
Litig., 522 F.2d 305 (3d Cir. 2008) with In Re Cardizem CD Antitrust Litig., 391 F.3d 812 (6th Cir. 
2004). For a discussion of use of multiple regression in evaluating class certification, see Bret M. Dickey 
& Daniel L. Rubinfeld, Antitrust Class Certification: Towards an Economic Framework, 66 N.Y.U. Ann. 
Surv. Am. L. 459 (2010) and John H. Johnson & Gregory K. Leonard, Economics and the Rigorous 
Analysis of Class Certification in Antitrust Cases, 3 J. Competition L. & Econ. 341 (2007).

8.  See, e.g., City of New York v. U.S. Dep’t of Commerce, 822 F. Supp. 906 (E.D.N.Y. 1993) 
(decision of Secretary of Commerce not to adjust the 1990 census was not arbitrary and capricious), 
vacated, 34 F.3d 1114 (2d Cir. 1994) (applying heightened scrutiny), rev’d sub nom. Wisconsin v. City of 
New York, 517 U.S. 565 (1996); Carey v. Klutznick, 508 F. Supp. 420, 432–33 (S.D.N.Y. 1980) (use 
of reasonable and scientifically valid statistical survey or sampling procedures to adjust census figures 
for the differential undercount is constitutionally permissible), stay granted, 449 U.S. 1068 (1980), rev’d 
on other grounds, 653 F.2d 732 (2d Cir. 1981), cert. denied, 455 U.S. 999 (1982); Young v. Klutznick, 
497 F. Supp. 1318, 1331 (E.D. Mich. 1980), rev’d on other grounds, 652 F.2d 617 (6th Cir. 1981), cert. 
denied, 455 U.S. 939 (1982).

9.  Multiple regression analysis was used in suits charging that at-large areawide voting was 
instituted to neutralize black voting strength, in violation of section 2 of the Voting Rights Act, 42 
U.S.C. § 1973 (1988). Multiple regression demonstrated that the race of the candidates and that of 
the electorate were determinants of voting. See Williams v. Brown, 446 U.S. 236 (1980); Rodriguez 
v. Pataki, 308 F. Supp. 2d 346, 414 (S.D.N.Y. 2004); United States v. Vill. of Port Chester, 2008 
U.S. Dist. LEXIS 4914 (S.D.N.Y. Jan. 17, 2008); Meza v. Galvin, 322 F. Supp. 2d 52 (D. Mass. 
2004) (violation of VRA with regard to Hispanic voters in Boston); Bone Shirt v. Hazeltine, 336 
F. Supp. 2d 976 (D.S.D. 2004) (violations of VRA with regard to Native American voters in South 
Dakota); Georgia v. Ashcroft, 195 F. Supp. 2d 25 (D.D.C. 2002) (redistricting of Georgia’s state and 
federal legislative districts); Benavidez v. City of Irving, 638 F. Supp. 2d 709 (N.D. Tex. 2009) (chal-
lenge of city’s at-large voting scheme). For commentary on statistical issues in voting rights cases, see, 
e.g., Statistical and Demographic Issues Underlying Voting Rights Cases, 15 Evaluation Rev. 659 (1991); 
Stephen P. Klein et al., Ecological Regression Versus the Secret Ballot, 31 Jurimetrics J. 393 (1991); James 
W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote Dilution Litigation, 21 
Urb. Law. 589 (1989); Arthur Lupia & Kenneth McCue, Why the 1980s Measures of Racially Polarized 
Voting Are Inadequate for the 1990s, 12 Law & Pol’y 353 (1990).

10.  See, e.g., Gregg v. Georgia, 428 U.S. 153, 184–86 (1976). For critiques of the validity of 
the deterrence analysis, see National Research Council, Deterrence and Incapacitation: Estimating 
the Effects of Criminal Sanctions on Crime Rates (Alfred Blumstein et al. eds., 1978); Richard O. 
Lempert, Desert and Deterrence: An Assessment of the Moral Bases of the Case for Capital Punishment, 79 
Mich. L. Rev. 1177 (1981); Hans Zeisel, The Deterrent Effect of the Death Penalty: Facts v. Faith, 1976 
Sup. Ct. Rev. 317; and John Donohue & Justin Wolfers, Uses and Abuses of Statistical Evidence in the 
Death Penalty Debate, 58 Stan. L. Rev. 787 (2005).

11.  See, e.g., Time Warner Entertainment Co. v. FCC, 56 F.3d 151 (D.C. Cir. 1995) (chal-
lenge to FCC’s application of multiple regression analysis to set cable rates), cert. denied, 516 U.S. 
1112 (1996); Appalachian Power Co. v. EPA, 135 F.3d 791 (D.C. Cir. 1998) (challenging the EPA’s 
application of regression analysis to set nitrous oxide emission limits); Consumers Util. Rate Advocacy 
Div. v. Ark. PSC, 99 Ark. App. 228 (Ark. Ct. App. 2007) (challenging an increase in nongas rates).

12.  See Polaroid Corp. v. Eastman Kodak Co., No. 76-1634-MA, 1990 WL 324105, at *29, 
*62–63 (D. Mass. Oct. 12, 1990) (damages awarded because of patent infringement), amended by No. 
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Multiple regression analysis can be a source of valuable scientific testimony 
in litigation. However, when inappropriately used, regression analysis can confuse 
important issues while having little, if any, probative value. In EEOC v. Sears, 
Roebuck & Co.,13 in which Sears was charged with discrimination against women 
in hiring practices, the Seventh Circuit acknowledged that “[m]ultiple regression 
analyses, designed to determine the effect of several independent variables on a 
dependent variable, which in this case is hiring, are an accepted and common 
method of proving disparate treatment claims.”14 However, the court affirmed 
the district court’s findings that the “E.E.O.C.’s regression analyses did not ‘accu-
rately reflect Sears’ complex, nondiscriminatory decision-making processes’” and 
that the “‘E.E.O.C.’s statistical analyses [were] so flawed that they lack[ed] any 
persuasive value.’”15 Serious questions also have been raised about the use of mul-
tiple regression analysis in census undercount cases and in death penalty cases.16 

The Supreme Court’s rulings in Daubert and Kumho Tire have encouraged 
parties to raise questions about the admissibility of multiple regression analyses.17 
Because multiple regression is a well-accepted scientific methodology, courts have 
frequently admitted testimony based on multiple regression studies, in some cases 
over the strong objection of one of the parties.18 However, on some occasions 
courts have excluded expert testimony because of a failure to utilize a multiple 
regression methodology.19 On other occasions, courts have rejected regression 

76-1634-MA, 1991 WL 4087 (D. Mass. Jan. 11, 1991); Estate of Vane v. The Fair, Inc., 849 F.2d 
186, 188 (5th Cir. 1988) (lost profits were the result of copyright infringement), cert. denied, 488 U.S. 
1008 (1989); Louis Vuitton Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 576, 664 (S.D.N.Y. 
2007) (trademark infringement and unfair competition suit). The use of multiple regression analysis to 
estimate damages has been contemplated in a wide variety of contexts. See, e.g., David Baldus et al., 
Improving Judicial Oversight of Jury Damages Assessments: A Proposal for the Comparative Additur/Remittitur 
Review of Awards for Nonpecuniary Harms and Punitive Damages, 80 Iowa L. Rev. 1109 (1995); Talcott 
J. Franklin, Calculating Damages for Loss of Parental Nurture Through Multiple Regression Analysis, 52 
Wash. & Lee L. Rev. 271 (1997); Roger D. Blair & Amanda Kay Esquibel, Yardstick Damages in Lost 
Profit Cases: An Econometric Approach, 72 Denv. U. L. Rev. 113 (1994). Daniel Rubinfeld, Quantitative 
Methods in Antitrust, in 1 Issues in Competition Law and Policy 723 (2008).

13.  839 F.2d 302 (7th Cir. 1988).
14.  Id. at 324 n.22.
15.  Id. at 348, 351 (quoting EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1342, 1352 

(N.D. Ill. 1986)). The district court commented specifically on the “severe limits of regression analysis 
in evaluating complex decision-making processes.” 628 F. Supp. at 1350.

16.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Sections II.A.3, 
B.1, in this manual.

17.  Daubert v. Merrill Dow Pharms., Inc. 509 U.S. 579 (1993); Kumho Tire Co. v. Carmichael, 
526 U.S. 137, 147 (1999) (expanding the Daubert’s application to nonscientific expert testimony).

18.  See Newport Ltd. v. Sears, Roebuck & Co., 1995 U.S. Dist. LEXIS 7652 (E.D. La. May 
26, 1995). See also Petruzzi’s IGA Supermarkets, supra note 6, 998 F.2d at 1240, 1247 (finding that 
the district court abused its discretion in excluding multiple regression-based testimony and reversing 
the grant of summary judgment to two defendants).

19.  See, e.g., In re Executive Telecard Ltd. Sec. Litig., 979 F. Supp. 1021 (S.D.N.Y. 1997).
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studies that did not have an adequate foundation or research design with respect 
to the issues at hand.20 

In interpreting the results of a multiple regression analysis, it is important to 
distinguish between correlation and causality. Two variables are correlated—that 
is, associated with each other—when the events associated with the variables 
occur more frequently together than one would expect by chance. For example, 
if higher salaries are associated with a greater number of years of work experience, 
and lower salaries are associated with fewer years of experience, there is a positive 
correlation between salary and number of years of work experience. However, if 
higher salaries are associated with less experience, and lower salaries are associated 
with more experience, there is a negative correlation between the two variables.

A correlation between two variables does not imply that one event causes the 
second. Therefore, in making causal inferences, it is important to avoid spurious 
correlation.21 Spurious correlation arises when two variables are closely related but 
bear no causal relationship because they are both caused by a third, unexamined 
variable. For example, there might be a negative correlation between the age of 
certain skilled employees of a computer company and their salaries. One should 
not conclude from this correlation that the employer has necessarily discriminated 
against the employees on the basis of their age. A third, unexamined variable, such 
as the level of the employees’ technological skills, could explain differences in pro-
ductivity and, consequently, differences in salary.22 Or, consider a patent infringe-
ment case in which increased sales of an allegedly infringing product are associated 
with a lower price of the patented product.23 This correlation would be spurious 
if the two products have their own noncompetitive market niches and the lower 
price is the result of a decline in the production costs of the patented product.

Pointing to the possibility of a spurious correlation will typically not be 
enough to dispose of a statistical argument. It may be appropriate to give little 
weight to such an argument absent a showing that the correlation is relevant. 
For example, a statistical showing of a relationship between technological skills 

20.  See City of Tuscaloosa v. Harcros Chemicals, Inc., 158 F.2d 548 (11th Cir. 1998), in which 
the court ruled plaintiffs’ regression-based expert testimony inadmissible and granted summary judg-
ment to the defendants. See also American Booksellers Ass’n v. Barnes & Noble, Inc., 135 F. Supp. 
2d 1031, 1041 (N.D. Cal. 2001), in which a model was said to contain “too many assumptions and 
simplifications that are not supported by real-world evidence,” and Obrey v. Johnson, 400 F.3d 691 
(9th Cir. 2005).

21.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section V.B.3, 
in this manual.

22.  See, e.g., Sheehan v. Daily Racing Form Inc., 104 F.3d 940, 942 (7th Cir.) (rejecting plain-
tiff’s age discrimination claim because statistical study showing correlation between age and retention 
ignored the “more than remote possibility that age was correlated with a legitimate job-related quali-
fication”), cert. denied, 521 U.S. 1104 (1997).

23.  In some particular cases, there are statistical tests that allow one to reject claims of causality. 
For a brief description of these tests, which were developed by Jerry Hausman, see Robert S. Pindyck 
& Daniel L. Rubinfeld, Econometric Models and Economic Forecasts § 7.5 (4th ed. 1997). 



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

310

and worker productivity might be required in the age discrimination example, 
above.24 

Causality cannot be inferred by data analysis alone; rather, one must infer that 
a causal relationship exists on the basis of an underlying causal theory that explains 
the relationship between the two variables. Even when an appropriate theory has 
been identified, causality can never be inferred directly. One must also look for 
empirical evidence that there is a causal relationship. Conversely, the fact that two 
variables are correlated does not guarantee the existence of a relationship; it could 
be that the model—a characterization of the underlying causal theory—does not 
reflect the correct interplay among the explanatory variables. In fact, the absence 
of correlation does not guarantee that a causal relationship does not exist. Lack of 
correlation could occur if (1) there are insufficient data, (2) the data are measured 
inaccurately, (3) the data do not allow multiple causal relationships to be sorted 
out, or (4) the model is specified wrongly because of the omission of a variable 
or variables that are related to the variable of interest.

There is a tension between any attempt to reach conclusions with near 
certainty and the inherently uncertain nature of multiple regression analysis. In 
general, the statistical analysis associated with multiple regression allows for the 
expression of uncertainty in terms of probabilities. The reality that statistical analy-
sis generates probabilities concerning relationships rather than certainty should not 
be seen in itself as an argument against the use of statistical evidence, or worse, as 
a reason to not admit that there is uncertainty at all. The only alternative might 
be to use less reliable anecdotal evidence.

This reference guide addresses a number of procedural and methodologi-
cal issues that are relevant in considering the admissibility of, and weight to be 
accorded to, the findings of multiple regression analyses. It also suggests some 
standards of reporting and analysis that an expert presenting multiple regression 
analyses might be expected to meet. Section II discusses research design—how the 
multiple regression framework can be used to sort out alternative theories about a 
case. The guide discusses the importance of choosing the appropriate specification 
of the multiple regression model and raises the issue of whether multiple regression 
is appropriate for the case at issue. Section III accepts the regression framework 
and concentrates on the interpretation of the multiple regression results from both 
a statistical and a practical point of view. It emphasizes the distinction between 
regression results that are statistically significant and results that are meaningful 
to the trier of fact. It also points to the importance of evaluating the robustness 

24.  See, e.g., Allen v. Seidman, 881 F.2d 375 (7th Cir. 1989) (judicial skepticism was raised when 
the defendant did not submit a logistic regression incorporating an omitted variable—the possession of 
a higher degree or special education; defendant’s attack on statistical comparisons must also include an 
analysis that demonstrates that comparisons are flawed). The appropriate requirements for the defen-
dant’s showing of spurious correlation could, in general, depend on the discovery process. See, e.g., 
Boykin v. Georgia Pac. Co., 706 F.2d 1384 (1983) (criticism of a plaintiff’s analysis for not including 
omitted factors, when plaintiff considered all information on an application form, was inadequate).
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of regression analyses, i.e., seeing the extent to which the results are sensitive to 
changes in the underlying assumptions of the regression model. Section IV briefly 
discusses the qualifications of experts and suggests a potentially useful role for 
court-appointed neutral experts. Section V emphasizes procedural aspects associ-
ated with use of the data underlying regression analyses. It encourages greater 
pretrial efforts by the parties to attempt to resolve disputes over statistical studies. 

Throughout the main body of this guide, hypothetical examples are used as 
illustrations. Moreover, the basic “mathematics” of multiple regression has been 
kept to a bare minimum. To achieve that goal, the more formal description of the 
multiple regression framework has been placed in the Appendix. The Appendix is 
self-contained and can be read before or after the text. The Appendix also includes 
further details with respect to the examples used in the body of this guide. 

II. Research Design: Model Specification
Multiple regression allows the testifying economist or other expert to choose 
among alternative theories or hypotheses and assists the expert in distinguishing 
correlations between variables that are plainly spurious from those that may reflect 
valid relationships.

A. �What Is the Specific Question That Is Under Investigation 
by the Expert?

Research begins with a clear formulation of a research question. The data to be 
collected and analyzed must relate directly to this question; otherwise, appropri-
ate inferences cannot be drawn from the statistical analysis. For example, if the 
question at issue in a patent infringement case is what price the plaintiff’s product 
would have been but for the sale of the defendant’s infringing product, sufficient 
data must be available to allow the expert to account statistically for the important 
factors that determine the price of the product.

B. �What Model Should Be Used to Evaluate the Question at 
Issue?

Model specification involves several steps, each of which is fundamental to the suc-
cess of the research effort. Ideally, a multiple regression analysis builds on a theory 
that describes the variables to be included in the study. A typical regression model 
will include one or more dependent variables, each of which is believed to be caus-
ally related to a series of explanatory variables. Because we cannot be certain that 
the explanatory variables are themselves unaffected or independent of the influence 
of the dependent variable (at least at the point of initial study), the explanatory 
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variables are often termed covariates. Covariates are known to have an association 
with the dependent or outcome variable, but causality remains an open question.

For example, the theory of labor markets might lead one to expect salaries in 
an industry to be related to workers’ experience and the productivity of workers’ 
jobs. A belief that there is job discrimination would lead one to create a model 
in which the dependent variable was a measure of workers’ salaries and the list of 
covariates included a variable reflecting discrimination in addition to measures 
of job training and experience.

In a perfect world, the analysis of the job discrimination (or any other) issue 
might be accomplished through a controlled “natural experiment,” in which 
employees would be randomly assigned to a variety of employers in an industry 
under study and asked to fill positions requiring identical experience and skills. In 
this observational study, where the only difference in salaries could be a result of 
discrimination, it would be possible to draw clear and direct inferences from an 
analysis of salary data. Unfortunately, the opportunity to conduct observational 
studies of this kind is rarely available to experts in the context of legal proceedings. 
In the real world, experts must do their best to interpret the results of real-world 
“quasi-experiments,” in which it is impossible to control all factors that might affect 
worker salaries or other variables of interest.25

Models are often characterized in terms of parameters—numerical character-
istics of the model. In the labor market discrimination example, one parameter 
might reflect the increase in salary associated with each additional year of prior 
job experience. Another parameter might reflect the reduction in salary associated 
with a lack of current on-the-job experience. Multiple regression uses a sample, 
or a selection of data, from the population (all the units of interest) to obtain esti-
mates of the values of the parameters of the model. An estimate associated with a 
particular explanatory variable is an estimated regression coefficient.

Failure to develop the proper theory, failure to choose the appropriate vari-
ables, or failure to choose the correct form of the model can substantially bias the 
statistical results—that is, create a systematic tendency for an estimate of a model 
parameter to be too high or too low.

1. Choosing the dependent variable

The variable to be explained, the dependent variable, should be the appropriate 
variable for analyzing the question at issue.26 Suppose, for example, that pay dis-

25.  In the literature on natural and quasi-experiments, the explanatory variables are characterized 
as “treatments” and the dependent variable as the “outcome.” For a review of natural experiments 
in the criminal justice arena, see David P. Farrington, A Short History of Randomized Experiments in 
Criminology, 27 Evaluation Rev. 218–27 (2003).

26.  In multiple regression analysis, the dependent variable is usually a continuous variable that 
takes on a range of numerical values. When the dependent variable is categorical, taking on only two 
or three values, modified forms of multiple regression, such as probit analysis or logit analysis, are 
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crimination among hourly workers is a concern. One choice for the dependent 
variable is the hourly wage rate of the employees; another choice is the annual 
salary. The distinction is important, because annual salary differences may in part 
result from differences in hours worked. If the number of hours worked is the 
product of worker preferences and not discrimination, the hourly wage is a good 
choice. If the number of hours worked is related to the alleged discrimination, 
annual salary is the more appropriate dependent variable to choose.27

2. �Choosing the explanatory variable that is relevant to the question at issue

The explanatory variable that allows the evaluation of alternative hypotheses must 
be chosen appropriately. Thus, in a discrimination case, the variable of interest 
may be the race or sex of the individual. In an antitrust case, it may be a variable 
that takes on the value 1 to reflect the presence of the alleged anticompetitive 
behavior and the value 0 otherwise.28

3. Choosing the additional explanatory variables

An attempt should be made to identify additional known or hypothesized explana-
tory variables, some of which are measurable and may support alternative substan-
tive hypotheses that can be accounted for by the regression analysis. Thus, in a 
discrimination case, a measure of the skills of the workers may provide an alterna-
tive explanation—lower salaries may have been the result of inadequate skills.29

appropriate. For an example of the use of the latter, see EEOC v. Sears, Roebuck & Co., 839 F.2d 302, 
325 (7th Cir. 1988) (EEOC used logit analysis to measure the impact of variables, such as age, educa-
tion, job-type experience, and product-line experience, on the female percentage of commission hires).

27.  In job systems in which annual salaries are tied to grade or step levels, the annual salary cor-
responding to the job position could be more appropriate.

28.  Explanatory variables may vary by type, which will affect the interpretation of the regression 
results. Thus, some variables may be continuous and others may be categorical.

29.  In James v. Stockham Valves, 559 F. 2d 310 (5th Cir. 1977), the Court of Appeals rejected 
the employer’s claim that skill level rather than race determined assignment and wage levels, noting 
the circularity of defendant’s argument. In Ottaviani v. State University of New York, 679 F. Supp. 288, 
306–08 (S.D.N.Y. 1988), aff’d, 875 F.2d 365 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the 
court ruled (in the liability phase of the trial) that the university showed that there was no discrimi-
nation in either placement into initial rank or promotions between ranks, and so rank was a proper 
variable in multiple regression analysis to determine whether women faculty members were treated 
differently than men.

However, in Trout v. Garrett, 780 F. Supp. 1396, 1414 (D.D.C. 1991), the court ruled (in the 
damage phase of the trial) that the extent of civilian employees’ prehire work experience was not 
an appropriate variable in a regression analysis to compute back pay in employment discrimination. 
According to the court, including the prehire level would have resulted in a finding of no sex discrimi-
nation, despite a contrary conclusion in the liability phase of the action. Id. See also Stuart v. Roache, 
951 F.2d 446 (1st Cir. 1991) (allowing only 3 years of seniority to be considered as the result of prior 
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Not all possible variables that might influence the dependent variable can be 
included if the analysis is to be successful; some cannot be measured, and others 
may make little difference.30 If a preliminary analysis shows the unexplained 
portion of the multiple regression to be unacceptably high, the expert may seek 
to discover whether some previously undetected variable is missing from the 
analysis.31

Failure to include a major explanatory variable that is correlated with the 
variable of interest in a regression model may cause an included variable to be 
credited with an effect that actually is caused by the excluded variable.32 In gen-
eral, omitted variables that are correlated with the dependent variable reduce the 
probative value of the regression analysis. The importance of omitting a relevant 
variable depends on the strength of the relationship between the omitted variable 
and the dependent variable and the strength of the correlation between the omit-
ted variable and the explanatory variables of interest. Other things being equal, 
the greater the correlation between the omitted variable and the variable of inter-
est, the greater the bias caused by the omission. As a result, the omission of an 
important variable may lead to inferences made from regression analyses that do 
not assist the trier of fact.33

discrimination), cert. denied, 504 U.S. 913 (1992). Whether a particular variable reflects “legitimate” 
considerations or itself reflects or incorporates illegitimate biases is a recurring theme in discrimination 
cases. See, e.g., Smith v. Virginia Commonwealth Univ., 84 F.3d 672, 677 (4th Cir. 1996) (en banc) 
(suggesting that whether “performance factors” should have been included in a regression analysis was 
a question of material fact); id. at 681–82 (Luttig, J., concurring in part) (suggesting that the failure of 
the regression analysis to include “performance factors” rendered it so incomplete as to be inadmis-
sible); id. at 690–91 (Michael, J., dissenting) (suggesting that the regression analysis properly excluded 
“performance factors”); see also Diehl v. Xerox Corp., 933 F. Supp. 1157, 1168 (W.D.N.Y. 1996).

30.  The summary effect of the excluded variables shows up as a random error term in the regres-
sion model, as does any modeling error. See Appendix, infra, for details. But see David W. Peterson, 
Reference Guide on Multiple Regression, 36 Jurimetrics J. 213, 214 n.2 (1996) (review essay) (asserting 
that “the presumption that the combined effect of the explanatory variables omitted from the model 
are uncorrelated with the included explanatory variables” is “a knife-edge condition . . . not likely 
to occur”).

31.  A very low R-squared (R2) is one indication of an unexplained portion of the multiple 
regression model that is unacceptably high. However, the inference that one makes from a particular 
value of R2 will depend, of necessity, on the context of the particular issues under study and the 
particular dataset that is being analyzed. For reasons discussed in the Appendix, a low R2 does not 
necessarily imply a poor model (and vice versa).

32.  Technically, the omission of explanatory variables that are correlated with the variable of 
interest can cause biased estimates of regression parameters.

33.  See Bazemore v. Friday, 751 F.2d 662, 671–72 (4th Cir. 1984) (upholding the district court’s 
refusal to accept a multiple regression analysis as proof of discrimination by a preponderance of the 
evidence, the court of appeals stated that, although the regression used four variable factors (race, 
education, tenure, and job title), the failure to use other factors, including pay increases that varied by 
county, precluded their introduction into evidence), aff’d in part, vacated in part, 478 U.S. 385 (1986).

Note, however, that in Sobel v. Yeshiva University, 839 F.2d 18, 33, 34 (2d Cir. 1988), cert. denied, 
490 U.S. 1105 (1989), the court made clear that “a [Title VII] defendant challenging the validity of 
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Omitting variables that are not correlated with the variable of interest is, in 
general, less of a concern, because the parameter that measures the effect of the 
variable of interest on the dependent variable is estimated without bias. Suppose, 
for example, that the effect of a policy introduced by the courts to encourage 
husbands to pay child support has been tested by randomly choosing some cases 
to be handled according to current court policies and other cases to be handled 
according to a new, more stringent policy. The effect of the new policy might be 
measured by a multiple regression using payment success as the dependent variable 
and a 0 or 1 explanatory variable (1 if the new program was applied; 0 if it was 
not). Failure to include an explanatory variable that reflected the age of the hus-
bands involved in the program would not affect the court’s evaluation of the new 
policy, because men of any given age are as likely to be affected by the old policy 
as they are the new policy. Randomly choosing the court’s policy to be applied 
to each case has ensured that the omitted age variable is not correlated with the 
policy variable.

Bias caused by the omission of an important variable that is related to the 
included variables of interest can be a serious problem.34 Nonetheless, it is pos-
sible for the expert to account for bias qualitatively if the expert has knowledge 
(even if not quantifiable) about the relationship between the omitted variable 
and the explanatory variable. Suppose, for example, that the plaintiff’s expert 
in a sex discrimination pay case is unable to obtain quantifiable data that reflect 
the skills necessary for a job, and that, on average, women are more skillful than 
men. Suppose also that a regression analysis of the wage rate of employees (the 
dependent variable) on years of experience and a variable reflecting the sex of 
each employee (the explanatory variable) suggests that men are paid substantially 
more than women with the same experience. Because differences in skill levels 
have not been taken into account, the expert may conclude reasonably that the 

a multiple regression analysis [has] to make a showing that the factors it contends ought to have been 
included would weaken the showing of salary disparity made by the analysis,” by making a specific 
attack and “a showing of relevance for each particular variable it contends . . . ought to [be] includ[ed]” 
in the analysis, rather than by simply attacking the results of the plaintiffs’ proof as inadequate for lack 
of a given variable. See also Smith v. Virginia Commonwealth Univ., 84 F.3d 672 (4th Cir. 1996) (en 
banc) (finding that whether certain variables should have been included in a regression analysis is a 
question of fact that precludes summary judgment); Freeland v. AT&T, 238 F.R.D. 130, 145 (S.D.N.Y. 
2006) (“Ordinarily, the failure to include a variable in a regression analysis will affect the probative 
value of the analysis and not its admissibility”).

Also, in Bazemore v. Friday, the Court, declaring that the Fourth Circuit’s view of the evidentiary 
value of the regression analyses was plainly incorrect, stated that “[n]ormally, failure to include variables 
will affect the analysis’ probativeness, not its admissibility. Importantly, it is clear that a regression 
analysis that includes less than ‘all measurable variables’ may serve to prove a plaintiff’s case.” 478 U.S. 
385, 400 (1986) (footnote omitted).

34.  See also David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section V.B.3, 
in this manual.
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wage difference measured by the regression is a conservative estimate of the true 
discriminatory wage difference.

The precision of the measure of the effect of a variable of interest on 
the dependent variable is also important.35 In general, the more complete the 
explained relationship between the included explanatory variables and the depen-
dent variable, the more precise the results. Note, however, that the inclusion of 
explanatory variables that are irrelevant (i.e., not correlated with the dependent 
variable) reduces the precision of the regression results. This can be a source of 
concern when the sample size is small, but it is not likely to be of great conse-
quence when the sample size is large.

4. Choosing the functional form of the multiple regression model

Choosing the proper set of variables to be included in the multiple regression 
model does not complete the modeling exercise. The expert must also choose the 
proper form of the regression model. The most frequently selected form is 
the linear regression model (described in the Appendix). In this model, the mag-
nitude of the change in the dependent variable associated with the change in any 
of the explanatory variables is the same no matter what the level of the explana-
tory variables. For example, one additional year of experience might add $5000 
to salary, regardless of the previous experience of the employee.

In some instances, however, there may be reason to believe that changes in 
explanatory variables will have differential effects on the dependent variable as the 
values of the explanatory variables change. In these instances, the expert should 
consider the use of a nonlinear model. Failure to account for nonlinearities can 
lead to either overstatement or understatement of the effect of a change in the 
value of an explanatory variable on the dependent variable.

One particular type of nonlinearity involves the interaction among several 
variables. An interaction variable is the product of two other variables that are 
included in the multiple regression model. The interaction variable allows the 
expert to take into account the possibility that the effect of a change in one vari-
able on the dependent variable may change as the level of another explanatory 
variable changes. For example, in a salary discrimination case, the inclusion of a 
term that interacts a variable measuring experience with a variable representing 
the sex of the employee (1 if a female employee; 0 if a male employee) allows 
the expert to test whether the sex differential varies with the level of experience. 
A significant negative estimate of the parameter associated with the sex variable 
suggests that inexperienced women are discriminated against, whereas a significant 

35.  A more precise estimate of a parameter is an estimate with a smaller standard error. See 
Appendix, infra, for details. 
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negative estimate of the interaction parameter suggests that the extent of discrimi-
nation increases with experience.36

Note that insignificant coefficients in a model with interactions may suggest a 
lack of discrimination, whereas a model without interactions may suggest the con-
trary. It is especially important to account for interaction terms that could affect 
the determination of discrimination; failure to do so may lead to false conclusions 
concerning discrimination.

5. Choosing multiple regression as a method of analysis

There are many multivariate statistical techniques other than multiple regres-
sion that are useful in legal proceedings. Some statistical methods are appropriate 
when nonlinearities are important;37 others apply to models in which the depen-
dent variable is discrete, rather than continuous.38 Still others have been applied 
predominantly to respond to methodological concerns arising in the context of 
discrimination litigation.39

It is essential that a valid statistical method be applied to assist with the analy-
sis in each legal proceeding. Therefore, the expert should be prepared to explain 
why any chosen method, including multiple regression, was more suitable than 
the alternatives.

36.  For further details concerning interactions, see the Appendix, infra. Note that in Ottaviani v. 
State University of New York, 875 F.2d 365, 367 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the 
defendant relied on a regression model in which a dummy variable reflecting gender appeared as an 
explanatory variable. The female plaintiff, however, used an alternative approach in which a regression 
model was developed for men only (the alleged protected group). The salaries of women predicted by 
this equation were then compared with the actual salaries; a positive difference would, according to 
the plaintiff, provide evidence of discrimination. For an evaluation of the methodological advantages 
and disadvantages of this approach, see Joseph L. Gastwirth, A Clarification of Some Statistical Issues in 
Watson v. Fort Worth Bank and Trust, 29 Jurimetrics J. 267 (1989).

37.  These techniques include, but are not limited to, piecewise linear regression, polynomial 
regression, maximum likelihood estimation of models with nonlinear functional relationships, and 
autoregressive and moving-average time-series models. See, e.g., Pindyck & Rubinfeld, supra note 23, 
at 117–21, 136–37, 273–84, 463–601. 

38.  For a discussion of probit analysis and logit analysis, techniques that are useful in the analysis 
of qualitative choice, see id. at 248–81.

39.  The correct model for use in salary discrimination suits is a subject of debate among labor 
economists. As a result, some have begun to evaluate alternative approaches, including urn models 
(Bruce Levin & Herbert Robbins, Urn Models for Regression Analysis, with Applications to Employment 
Discrimination Studies, Law & Contemp. Probs., Autumn 1983, at 247) and, as a means of correct-
ing for measurement errors, reverse regression (Delores A. Conway & Harry V. Roberts, Reverse 
Regression, Fairness, and Employment Discrimination, 1 J. Bus. & Econ. Stat. 75 (1983)). But see Arthur 
S. Goldberger, Redirecting Reverse Regressions, 2 J. Bus. & Econ. Stat. 114 (1984); Arlene S. Ash, The 
Perverse Logic of Reverse Regression, in Statistical Methods in Discrimination Litigation 85 (D.H. Kaye 
& Mikel Aickin eds., 1986).
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III. �Interpreting Multiple Regression 
Results

Multiple regression results can be interpreted in purely statistical terms, through 
the use of significance tests, or they can be interpreted in a more practical, nonsta-
tistical manner. Although an evaluation of the practical significance of regression 
results is almost always relevant in the courtroom, tests of statistical significance 
are appropriate only in particular circumstances.

A. �What Is the Practical, as Opposed to the Statistical, 
Significance of Regression Results?

Practical significance means that the magnitude of the effect being studied is 
not de minimis—it is sufficiently important substantively for the court to be 
concerned. For example, if the average wage rate is $10.00 per hour, a wage 
differential between men and women of $0.10 per hour is likely to be deemed 
practically insignificant because the differential represents only 1% ($0.10/$10.00) 
of the average wage rate.40 That same difference could be statistically significant, 
however, if a sufficiently large sample of men and women was studied.41 The 
reason is that statistical significance is determined, in part, by the number of 
observations in the dataset.

As a general rule, the statistical significance of the magnitude of a regression 
coefficient increases as the sample size increases. Thus, a $1.00 per hour wage 
differential between men and women that was determined to be insignificantly 
different from zero with a sample of 20 men and women could be highly signifi-
cant if the sample size were increased to 200.

Often, results that are practically significant are also statistically significant.42 
However, it is possible with a large dataset to find statistically significant coeffi-

40.  There is no specific percentage threshold above which a result is practically significant. Prac-
tical significance must be evaluated in the context of a particular legal issue. See also David H. Kaye & 
David A. Freedman, Reference Guide on Statistics, Section IV.B.2, in this manual. 

41.  Practical significance also can apply to the overall credibility of the regression results. Thus, 
in McCleskey v. Kemp, 481 U.S. 279 (1987), coefficients on race variables were statistically significant, 
but the Court declined to find them legally or constitutionally significant.

42.  In Melani v. Board of Higher Education, 561 F. Supp. 769, 774 (S.D.N.Y. 1983), a Title VII 
suit was brought against the City University of New York (CUNY) for allegedly discriminating against 
female instructional staff in the payment of salaries. One approach of the plaintiff’s expert was to use 
multiple regression analysis. The coefficient on the variable that reflected the sex of the employee 
was approximately $1800 when all years of data were included. Practically (in terms of average wages 
at the time) and statistically (in terms of a 5% significance test), this result was significant. Thus, the 
court stated that “[p]laintiffs have produced statistically significant evidence that women hired as CUNY 
instructional staff since 1972 received substantially lower salaries than similarly qualified men.” Id. at 
781 (emphasis added). For a related analysis involving multiple comparison, see Csicseri v. Bowsher, 
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cients that are practically insignificant. Similarly, it is also possible (especially when 
the sample size is small) to obtain results that are practically significant but fail to 
achieve statistical significance. Suppose, for example, that an expert undertakes a 
damages study in a patent infringement case and predicts “but-for sales”—what 
sales would have been had the infringement not occurred—using data that predate 
the period of alleged infringement. If data limitations are such that only 3 or 4 
years of preinfringement sales are known, the difference between but-for sales and 
actual sales during the period of alleged infringement could be practically signifi-
cant but statistically insignificant. Alternatively, with only 3 or 4 data points, the 
expert would be unable to detect an effect, even if one existed.

1. When should statistical tests be used?

A test of a specific contention, a hypothesis test, often assists the court in determin-
ing whether a violation of the law has occurred in areas in which direct evidence 
is inaccessible or inconclusive. For example, an expert might use hypothesis tests 
in race and sex discrimination cases to determine the presence of a discriminatory 
effect.

Statistical evidence alone never can prove with absolute certainty the worth 
of any substantive theory. However, by providing evidence contrary to the view 
that a particular form of discrimination has not occurred, for example, the mul-
tiple regression approach can aid the trier of fact in assessing the likelihood that 
discrimination has occurred.43

Tests of hypotheses are appropriate in a cross-sectional analysis, in which the 
data underlying the regression study have been chosen as a sample of a population 
at a particular point in time, and in a time-series analysis, in which the data being 
evaluated cover a number of time periods. In either analysis, the expert may want 
to evaluate a specific hypothesis, usually relating to a question of liability or to the 
determination of whether there is measurable impact of an alleged violation. Thus, 
in a sex discrimination case, an expert may want to evaluate a null hypothesis of 
no discrimination against the alternative hypothesis that discrimination takes a par-

862 F. Supp. 547, 572 (D.D.C. 1994) (noting that plaintiff’s expert found “statistically significant 
instances of discrimination” in 2 of 37 statistical comparisons, but suggesting that “2 of 37 amounts to 
roughly 5% and is hardly indicative of a pattern of discrimination”), aff’d, 67 F.3d 972 (D.C. Cir. 1995).

43.  See International Brotherhood. of Teamsters v. United States, 431 U.S. 324 (1977) (the 
Court inferred discrimination from overwhelming statistical evidence by a preponderance of the evi-
dence); Ryther v. KARE 11, 108 F.3d 832, 844 (8th Cir. 1997) (“The plaintiff produced overwhelm-
ing evidence as to the elements of a prima facie case, and strong evidence of pretext, which, when 
considered with indications of age-based animus in [plaintiff’s] work environment, clearly provide 
sufficient evidence as a matter of law to allow the trier of fact to find intentional discrimination.”); 
Paige v. California, 291 F.3d 1141 (9th Cir. 2002) (allowing plaintiffs to rely on aggregated data to 
show employment discrimination).
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ticular form.44 Alternatively, in an antitrust damages proceeding, the expert may 
want to test a null hypothesis of no legal impact against the alternative hypothesis 
that there was an impact. In either type of case, it is important to realize that 
rejection of the null hypothesis does not in itself prove legal liability. It is possible 
to reject the null hypothesis and believe that an alternative explanation other than 
one involving legal liability accounts for the results.45

 

Often, the null hypothesis is stated in terms of a particular regression coeffi
cient being equal to 0. For example, in a wage discrimination case, the null 
hypothesis would be that there is no wage difference between sexes. If a negative 
difference is observed (meaning that women are found to earn less than men, after 
the expert has controlled statistically for legitimate alternative explanations), the 
difference is evaluated as to its statistical significance using the t-test.46 The t-test 
uses the t-statistic to evaluate the hypothesis that a model parameter takes on a 
particular value, usually 0.

2. What is the appropriate level of statistical significance?

In most scientific work, the level of statistical significance required to reject the 
null hypothesis (i.e., to obtain a statistically significant result) is set convention-
ally at 0.05, or 5%.47 The significance level measures the probability that the 
null hypothesis will be rejected incorrectly. In general, the lower the percent-
age required for statistical significance, the more difficult it is to reject the null 
hypothesis; therefore, the lower the probability that one will err in doing so. 
Although the 5% criterion is typical, reporting of more stringent 1% significance 
tests or less stringent 10% tests can also provide useful information.

	 In doing a statistical test, it is useful to compute an observed significance 
level, or p-value. The p-value associated with the null hypothesis that a regression 
coefficient is 0 is the probability that a coefficient of this magnitude or larger could 
have occurred by chance if the null hypothesis were true. If the p-value were less 
than or equal to 5%, the expert would reject the null hypothesis in favor of the 

44.  Tests are also appropriate when comparing the outcomes of a set of employer decisions with 
those that would have been obtained had the employer chosen differently from among the available 
options.

45.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section IV.C.5, 
in this manual.

46.  The t-test is strictly valid only if a number of important assumptions hold. However, for 
many regression models, the test is approximately valid if the sample size is sufficiently large. See 
Appendix, infra, for a more complete discussion of the assumptions underlying multiple regression..

47.  See, e.g., Palmer v. Shultz, 815 F.2d 84, 92 (D.C. Cir. 1987) (“‘the .05 level of significance 
. . . [is] certainly sufficient to support an inference of discrimination’” (quoting Segar v. Smith, 738 
F.2d 1249, 1283 (D.C. Cir. 1984), cert. denied, 471 U.S. 1115 (1985))); United States v. Delaware, 
2004 U.S. Dist. LEXIS 4560 (D. Del. Mar. 22, 2004) (stating that .05 is the normal standard chosen). 
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alternative hypothesis; if the p-value were greater than 5%, the expert would fail 
to reject the null hypothesis.48

3. Should statistical tests be one-tailed or two-tailed?

When the expert evaluates the null hypothesis that a variable of interest has no 
linear association with a dependent variable against the alternative hypothesis that 
there is an association, a two-tailed test, which allows for the effect to be either 
positive or negative, is usually appropriate. A one-tailed test would usually be 
applied when the expert believes, perhaps on the basis of other direct evidence 
presented at trial, that the alternative hypothesis is either positive or negative, but 
not both. For example, an expert might use a one-tailed test in a patent infringe-
ment case if he or she strongly believes that the effect of the alleged infringement 
on the price of the infringed product was either zero or negative. (The sales of 
the infringing product competed with the sales of the infringed product, thereby 
lowering the price.) By using a one-tailed test, the expert is in effect stating that 
prior to looking at the data it would be very surprising if the data pointed in the 
direct opposite to the one posited by the expert.

Because using a one-tailed test produces p-values that are one-half the size of 
p-values using a two-tailed test, the choice of a one-tailed test makes it easier for 
the expert to reject a null hypothesis. Correspondingly, the choice of a two-tailed 
test makes null hypothesis rejection less likely. Because there is some arbitrariness 
involved in the choice of an alternative hypothesis, courts should avoid relying 
solely on sharply defined statistical tests.49 Reporting the p-value or a confidence 
interval should be encouraged because it conveys useful information to the court, 
whether or not a null hypothesis is rejected.

48.  The use of 1%, 5%, and, sometimes, 10% levels for determining statistical significance 
remains a subject of debate. One might argue, for example, that when regression analysis is used in 
a price-fixing antitrust case to test a relatively specific alternative to the null hypothesis (e.g., price 
fixing), a somewhat lower level of confidence (a higher level of significance, such as 10% ) might be 
appropriate. Otherwise, when the alternative to the null hypothesis is less specific, such as the rather 
vague alternative of “effect” (e.g., the price increase is caused by the increased cost of production, 
increased demand, a sharp increase in advertising, or price fixing), a high level of confidence (associated 
with a low significance level, such as 1%) may be appropriate. See, e.g., Vuyanich v. Republic Nat’l 
Bank, 505 F. Supp. 224, 272 (N.D. Tex. 1980) (noting the “arbitrary nature of the adoption of the 
5% level of [statistical] significance” to be required in a legal context); Cook v. Rockwell Int’l Corp., 
2006 U.S. Dist. LEXIS 89121 (D. Colo. Dec. 7, 2006). 

49.  Courts have shown a preference for two-tailed tests. See, e.g., Palmer v. Shultz, 815 F.2d 
84, 95–96 (D.C. Cir. 1987) (rejecting the use of one-tailed tests, the court found that because some 
appellants were claiming overselection for certain jobs, a two-tailed test was more appropriate in Title 
VII cases); Moore v. Summers, 113 F. Supp. 2d 5, 20 (D.D.C. 2000) (reiterating the preference for a 
two-tailed test). See also David H. Kaye & David A. Freedman, Reference Guide on Statistics, Sec-
tion IV.C.2, in this manual; Csicseri v. Bowsher, 862 F. Supp. 547, 565 (D.D.C. 1994) (finding that 
although a one-tailed test is “not without merit,” a two-tailed test is preferable).
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B. Are the Regression Results Robust?
The issue of robustness—whether regression results are sensitive to slight modi-
fications in assumptions (e.g., that the data are measured accurately)—is of vital 
importance. If the assumptions of the regression model are valid, standard statistical 
tests can be applied. However, when the assumptions of the model are violated, 
standard tests can overstate or understate the significance of the results.

The violation of an assumption does not necessarily invalidate a regres-
sion analysis, however. In some instances in which the assumptions of multiple 
regression analysis fail, there are other statistical methods that are appropriate. 
Consequently, experts should be encouraged to provide additional information 
that relates to the issue of whether regression assumptions are valid, and if they 
are not valid, the extent to which the regression results are robust. The following 
questions highlight some of the more important assumptions of regression analysis.

1. �What evidence exists that the explanatory variable causes changes in 
the dependent variable?

In the multiple regression framework, the expert often assumes that changes in 
explanatory variables affect the dependent variable, but changes in the dependent 
variable do not affect the explanatory variables—that is, there is no feedback.50 
In making this assumption, the expert draws the conclusion that a correlation 
between a covariate and the dependent outcome variable results from the effect of 
the former on the latter and not vice versa. Were it the case that the causality was 
reversed so that the outcome variable affected the covariate, and not vice versa, 
spurious correlation is likely to cause the expert and the trier of fact to reach the 
wrong conclusion. Finally, it is possible in some cases that both the outcome vari-
able and the covariate each affect the other; if the expert does not take this more 
complex relationship into account, the regression coefficient on the variable of 
interest could be either too high or too low.51

 

Figure 1 illustrates this point. In Figure 1(a), the dependent variable, price, is 
explained through a multiple regression framework by three covariate explanatory 
variables—demand, cost, and advertising—with no feedback. Each of the three 
covariates is assumed to affect price causally, while price is assumed to have no 
effect on the three covariates. However, in Figure 1(b), there is feedback, because 
price affects demand, and demand, cost, and advertising affect price. Cost and 
advertising, however, are not affected by price. In this case both price and demand 
are jointly determined; each has a causal effect on the other.

50.  The assumption of no feedback is especially important in litigation, because it is possible for 
the defendant (if responsible, for example, for price fixing or discrimination) to affect the values of 
the explanatory variables and thus to bias the usual statistical tests that are used in multiple regression.

51.  When both effects occur at the same time, this is described as “simultaneity.”
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Figure 1. Feedback.

As a general rule, there are no basic direct statistical tests for determining the 
direction of causality; rather, the expert, when asked, should be prepared to defend 
his or her assumption based on an understanding of the underlying behavior evi-
dence relating to the businesses or individuals involved.52

Although there is no single approach that is entirely suitable for estimating 
models when the dependent variable affects one or more explanatory variables, 
one possibility is for the expert to drop the questionable variable from the regres-
sion to determine whether the variable’s exclusion makes a difference. If it does 
not, the issue becomes moot. Another approach is for the expert to expand the 
multiple regression model by adding one or more equations that explain the rela-
tionship between the explanatory variable in question and the dependent variable.

Suppose, for example, that in a salary-based sex discrimination suit the defen-
dant’s expert considers employer-evaluated test scores to be an appropriate explan-
atory variable for the dependent variable, salary. If the plaintiff were to provide 
information that the employer adjusted the test scores in a manner that penalized 
women, the assumption that salaries were determined by test scores and not that 
test scores were affected by salaries might be invalid. If it is clearly inappropriate, 

52.  There are statistical time-series tests for particular formulations of causality; see Pindyck & 
Rubinfeld, supra note 23, § 9.2.
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the test-score variable should be removed from consideration. Alternatively, the 
information about the employer’s use of the test scores could be translated into 
a second equation in which a new dependent variable—test score—is related to 
workers’ salary and sex. A test of the hypothesis that salary and sex affect test scores 
would provide a suitable test of the absence of feedback.

2. �To what extent are the explanatory variables correlated with each other?

It is essential in multiple regression analysis that the explanatory variable of interest 
not be correlated perfectly with one or more of the other explanatory variables. 
If there were perfect correlation between two variables, the expert could not 
separate out the effect of the variable of interest on the dependent variable from 
the effect of the other variable. In essence, there are two explanations for the 
same pattern in the data. Suppose, for example, that in a sex discrimination suit, a 
particular form of job experience is determined to be a valid source of high wages. 
If all men had the requisite job experience and all women did not, it would be 
impossible to tell whether wage differentials between men and women were the 
result of sex discrimination or differences in experience.

When two or more explanatory variables are correlated perfectly—that is, 
when there is perfect collinearity—one cannot estimate the regression parameters. 
The existing dataset does not allow one to distinguish between alternative com-
peting explanations of the movement in the dependent variable. However, when 
two or more variables are highly, but not perfectly, correlated—that is, when there 
is multicollinearity—the regression can be estimated, but some concerns remain. 
The greater the multicollinearity between two variables, the less precise are the 
estimates of individual regression parameters, and an expert is less able to distin-
guish among competing explanations for the movement in the outcome variable 
(even though there is no problem in estimating the joint influence of the two 
variables and all other regression parameters).53

Fortunately, the reported regression statistics take into account any multi
collinearity that might be present.54

 It is important to note as a corollary, how-
ever, that a failure to find a strong relationship between a variable of interest and 

53.  See Griggs v. Duke Power Co., 401 U.S. 424 (1971) (The court argued that an education 
requirement was one rationalization of the data, but racial discrimination was another. If you had put 
both race and education in the regression, it would have been asking too much of the data to tell 
which variable was doing the real work, because education and race were so highly correlated in the 
market at that time.). 

54.  See Denny v. Westfield State College, 669 F. Supp. 1146, 1149 (D. Mass. 1987) (The court 
accepted the testimony of one expert that “the presence of multicollinearity would merely tend to 
overestimate the amount of error associated with the estimate. . . . In other words, p-values will be 
artificially higher than they would be if there were no multicollinearity present.”) (emphasis added); 
In re High Fructose Corn Syrup Antitrust Litig., 295 F.3d 651, 659 (7th Cir. Ill. 2002) (refusing to 
second-guess district court’s admission of regression analyses that addressed multicollinearity in dif-
ferent ways).
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a dependent variable need not imply that there is no relationship.55 A relatively 
small sample, or even a large sample with substantial multicollinearity, may not 
provide sufficient information for the expert to determine whether there is a 
relationship.

3. �To what extent are individual errors in the regression model 
independent?

If the expert calculated the parameters of a multiple regression model using as data 
the entire population, the estimates might still measure the model’s population 
parameters with error. Errors can arise for a number of reasons, including (1) the 
failure of the model to include the appropriate explanatory variables, (2) the failure 
of the model to reflect any nonlinearities that might be present, and (3) the inclu-
sion of inappropriate variables in the model. (Of course, further sources of error 
will arise if a sample, or subset, of the population is used to estimate the regression 
parameters.)

It is useful to view the cumulative effect of all of these sources of modeling 
error as being represented by an additional variable, the error term, in the mul-
tiple regression model. An important assumption in multiple regression analysis is 
that the error term and each of the explanatory variables are independent of each 
other. (If the error term and an explanatory variable are independent, they are not 
correlated with each other.) To the extent this is true, the expert can estimate the 
parameters of the model without bias; the magnitude of the error term will affect 
the precision with which a model parameter is estimated, but will not cause that 
estimate to be consistently too high or too low.

The assumption of independence may be inappropriate in a number of cir-
cumstances. In some instances, failure of the assumption makes multiple regres-
sion analysis an unsuitable statistical technique; in other instances, modifications 
or adjustments within the regression framework can be made to accommodate 
the failure.

The independence assumption may fail, for example, in a study of individual 
behavior over time, in which an unusually high error value in one time period is 
likely to lead to an unusually high value in the next time period. For example, if 
an economic forecaster underpredicted this year’s Gross Domestic Product, he or 
she is likely to underpredict next year’s as well; the factor that caused the predic-
tion error (e.g., an incorrect assumption about Federal Reserve policy) is likely 
to be a source of error in the future.

55.  If an explanatory variable of concern and another explanatory variable are highly correlated, 
dropping the second variable from the regression can be instructive. If the coefficient on the explana-
tory variable of concern becomes significant, a relationship between the dependent variable and the 
explanatory variable of concern is suggested.
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Alternatively, the assumption of independence may fail in a study of a group 
of firms at a particular point in time, in which error terms for large firms are sys-
tematically higher than error terms for small firms. For example, an analysis of the 
profitability of firms may not accurately account for the importance of advertising 
as a source of increased sales and profits. To the extent that large firms advertise 
more than small firms, the regression errors would be large for the large firms and 
small for the small firms. A third possibility is that the dependent variable varies 
at the individual level, but the explanatory variable of interest varies only at the 
level of a group. For example, an expert might be viewing the price of a product 
in an antitrust case as a function of a variable or variables that measure the market-
ing channel through which the product is sold (e.g., wholesale or retail). In this 
case, errors within each of the marketing groups are likely not to be independent. 
Failure to account for this could cause the expert to overstate the statistical sig-
nificance of the regression parameters.

In some instances, there are statistical tests that are appropriate for evaluating 
the independence assumption.56 If the assumption has failed, the expert should 
ask first whether the source of the lack of independence is the omission of an 
important explanatory variable from the regression. If so, that variable should be 
included when possible, or the potential effect of its omission should be estimated 
when inclusion is not possible. If there is no important missing explanatory vari-
able, the expert should apply one or more procedures that modify the standard 
multiple regression technique to allow for more accurate estimates of the regres-
sion parameters.57

4. �To what extent are the regression results sensitive to individual data 
points?

Estimated regression coefficients can be highly sensitive to particular data points. 
Suppose, for example, that one data point deviates greatly from its expected value, 
as indicated by the regression equation, while the remaining data points show 

56.  In a time-series analysis, the correlation of error values over time, the “serial correlation,” 
can be tested (in most instances) using a number of tests, including the Durbin-Watson test. The 
possibility that some error terms are consistently high in magnitude and others are systematically low, 
heteroscedasticity can also be tested in a number of ways. See, e.g., Pindyck & Rubinfeld, supra note 
23, at 146–59. When serial correlation and/or heteroscedasticity are present, the standard errors asso-
ciated with the estimated coefficients must be modified. For a discussion of the use of such “robust” 
standard errors, see Jeffrey M. Wooldridge, Introductory Econometrics: A Modern Approach, ch. 8 
(4th ed. 2009).

57.  When serial correlation is present, a number of closely related statistical methods are appro-
priate, including generalized differencing (a type of generalized least squares) and maximum likelihood 
estimation. When heteroscedasticity is the problem, weighted least squares and maximum likelihood esti-
mation are appropriate. See, e.g., id. All these techniques are readily available in a number of statistical 
computer packages. They also allow one to perform the appropriate statistical tests of the significance of 
the regression coefficients.
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little deviation. It would not be unusual in this situation for the coefficients in 
a multiple regression to change substantially if the data point in question were 
removed from the sample.

Evaluating the robustness of multiple regression results is a complex endeavor. 
Consequently, there is no agreed set of tests for robustness that analysts should 
apply. In general, it is important to explore the reasons for unusual data points. If 
the source is an error in recording data, the appropriate corrections can be made. 
If all the unusual data points have certain characteristics in common (e.g., they 
all are associated with a supervisor who consistently gives high ratings in an equal 
pay case), the regression model should be modified appropriately.

One generally useful diagnostic technique is to determine to what extent 
the estimated parameter changes as each data point in the regression analysis is 
dropped from the sample. An influential data point—a point that causes the esti-
mated parameter to change substantially—should be studied further to determine 
whether mistakes were made in the use of the data or whether important explana-
tory variables were omitted.58

5. To what extent are the data subject to measurement error?

In multiple regression analysis it is assumed that variables are measured accu-
rately.59 If there are measurement errors in the dependent variable, estimates of 
regression parameters will be less accurate, although they will not necessarily be 
biased. However, if one or more independent variables are measured with error, 
the corresponding parameter estimates are likely to be biased, typically toward 
zero (and other coefficient estimates are likely to be biased as well). 

To understand why, suppose that the dependent variable, salary, is measured 
without error, and the explanatory variable, experience, is subject to measurement 
error. (Seniority or years of experience should be accurate, but the type of experi-
ence is subject to error, because applicants may overstate previous job responsibili-
ties.) As the measurement error increases, the estimated parameter associated with 
the experience variable will tend toward zero, that is, eventually, there will be no 
relationship between salary and experience.

It is important for any source of measurement error to be carefully evaluated. 
In some circumstances, little can be done to correct the measurement-error prob-

58.  A more complete and formal treatment of the robustness issue appears in David A. Belsley et 
al., Regression Diagnostics: Identifying Influential Data and Sources of Collinearity 229–44 (1980). For 
a useful discussion of the detection of outliers and the evaluation of influential data points, see R.D. 
Cook & S. Weisberg, Residuals and Influence in Regression (Monographs on Statistics and Applied 
Probability No. 18, 1982). For a broad discussion of robust regression methods, see Peer J. Rouseeuw 
& Annick M. Leroy, Robust Regression and Outlier Detection (2004). 

59.  Inaccuracy can occur not only in the precision with which a particular variable is measured, 
but also in the precision with which the variable to be measured corresponds to the appropriate theo-
retical construct specified by the regression model. 
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lem; the regression results must be interpreted in that light. In other circumstances, 
however, the expert can correct measurement error by finding a new, more reli-
able data source. Finally, alternative estimation techniques (using related variables 
that are measured without error) can be applied to remedy the measurement-error 
problem in some situations.60 

IV. The Expert
Multiple regression analysis is taught to students in extremely diverse fields, 
including statistics, economics, political science, sociology, psychology, anthro-
pology, public health, and history. Nonetheless, the methodology is difficult to 
master, necessitating a combination of technical skills (the science) and experience 
(the art). This naturally raises two questions:

1.	 Who should be qualified as an expert?
2.	 When and how should the court appoint an expert to assist in the evalu-

ation of statistical issues, including those relating to multiple regression?

A. Who Should Be Qualified as an Expert? 
Any individual with substantial training in and experience with multiple regression 
and other statistical methods may be qualified as an expert.61 A doctoral degree in 
a discipline that teaches theoretical or applied statistics, such as economics, history, 
and psychology, usually signifies to other scientists that the proposed expert meets 
this preliminary test of the qualification process.

The decision to qualify an expert in regression analysis rests with the court. 
Clearly, the proposed expert should be able to demonstrate an understanding of 
the discipline. Publications relating to regression analysis in peer-reviewed jour-
nals, active memberships in related professional organizations, courses taught on 
regression methods, and practical experience with regression analysis can indicate 
a professional’s expertise. However, the expert’s background and experience with 
the specific issues and tools that are applicable to a particular case should also be 
considered during the qualification process. Thus, if the regression methods are 
being utilized to evaluate damages in an antitrust case, the qualified expert should 
have sufficient qualifications in economic analysis as well as statistics. An individual 
whose expertise lies solely with statistics will be limited in his or her ability to 
evaluate the usefulness of alternative economic models. Similarly, if a case involves 

60.  See, e.g., Pindyck & Rubinfeld, supra note 23, at 178–98 (discussion of instrumental variables 
estimation).

61.  A proposed expert whose only statistical tool is regression analysis may not be able to judge 
when a statistical analysis should be based on an approach other than regression analysis.
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eyewitness identification, a background in psychology as well as statistics may 
provide essential qualifying elements.

B. Should the Court Appoint a Neutral Expert?
There are conflicting views on the issue of whether court-appointed experts 
should be used. In complex cases in which two experts are presenting conflicting 
statistical evidence, the use of a “neutral” court-appointed expert can be advan-
tageous. There are those who believe, however, that there is no such thing as a 
truly “neutral” expert. In any event, if an expert is chosen, that individual should 
have substantial expertise and experience—ideally, someone who is respected by 
both plaintiffs and defendants.62

The appointment of such an expert is likely to influence the presentation of 
the statistical evidence by the experts for the parties in the litigation. The neutral 
expert will have an incentive to present a balanced position that relies on broad 
principles for which there is consensus in the community of experts. As a result, 
the parties’ experts can be expected to present testimony that confronts core issues 
that are likely to be of concern to the court and that is sufficiently balanced to be 
persuasive to the court-appointed expert.63

Rule 706 of the Federal Rules of Evidence governs the selection and instruc-
tion of court-appointed experts. In particular:

1.	 The expert should be notified of his or her duties through a written court 
order or at a conference with the parties.

2.	 The expert should inform the parties of his or her findings orally or in 
writing.

3.	 If deemed appropriate by the court, the expert should be available to testify 
and may be deposed or cross-examined by any party.

4.	 The court must determine the expert’s compensation.64

5.	 The parties should be free to utilize their own experts.

Although not required by Rule 706, it will usually be advantageous for the 
court to opt for the appointment of a neutral expert as early in the litigation pro-
cess as possible. It will also be advantageous to minimize any ex parte contact with 

62.  Judge Posner notes in In re High Fructose Corn Syrup Antitrust Litig., 295 F.2d 651, 665 (7th 
Cir., 2002), “the judge and jury can repose a degree of confidence in his testimony that it could not 
repose in that of a party’s witness. The judge and the jury may not understand the neutral expert 
perfectly but at least they will know that he has no axe to grind, and so, to a degree anyway, they will 
be able to take his testimony on faith.”

63.  For a discussion of the presentation of expert evidence generally, including the use of court-
appointed experts, see Samuel R. Gross, Expert Evidence, 1991 Wis. L. Rev. 1113 (1991).

64.  Although Rule 706 states that the compensation must come from public funds, complex 
litigation may be sufficiently costly as to require that the parties share the costs of the neutral expert.
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the neutral expert; this will diminish the possibility that one or both parties will 
come to the view that the court’s ultimate opinion was unreasonably influenced 
by the neutral expert.

Rule 706 does not offer specifics as to the process of appointment of a court-
appointed expert. One possibility is to have the parties offer a short list of possible 
appointees. If there was no common choice, the court could select from the com-
bined list, perhaps after allowing each party to exercise one or more peremptory 
challenges. Another possibility is to obtain a list of recommended experts from a 
selection of individuals known to be experts in the field.

V. Presentation of Statistical Evidence
The costs of evaluating statistical evidence can be reduced and the precision of 
that evidence increased if the discovery process is used effectively. In evaluating 
the admissibility of statistical evidence, courts should consider the following issues:

1.	 Has the expert provided sufficient information to replicate the multiple 
regression analysis?

2.	 Are the expert’s methodological choices reasonable, or are they arbitrary 
and unjustified?

A. �What Disagreements Exist Regarding Data on Which the 
Analysis Is Based?

In general, a clear and comprehensive statement of the underlying research 
methodology is a requisite part of the discovery process. The expert should be 
encouraged to reveal both the nature of the experimentation carried out and the 
sensitivity of the results to the data and to the methodology.

The following suggestions are useful requirements that can substantially 
improve the discovery process:

1.	 To the extent possible, the parties should be encouraged to agree to use 
a common database. Even if disagreement about the significance of the 
data remains, early agreement on a common database can help focus the 
discovery process on the important issues in the case.

2.	 A party that offers data to be used in statistical work, including multiple 
regression analysis, should be encouraged to provide the following to the 
other parties: (a) a hard copy of the data when available and manageable 
in size, along with the underlying sources; (b) computer disks or tapes on 
which the data are recorded; (c) complete documentation of the disks or 
tapes; (d) computer programs that were used to generate the data (in hard 
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copy if necessary, but preferably on a computer disk or tape, or both); 
and (e) documentation of such computer programs. The documentation 
should be sufficiently complete and clear so that the opposing expert can 
reproduce all of the statistical work.

3.	 A party offering data should make available the personnel involved in the 
compilation of such data to answer the other parties’ technical questions 
concerning the data and the methods of collection or compilation.

4.	 A party proposing to offer an expert’s regression analysis at trial should 
ask the expert to fully disclose (a) the database and its sources,65 (b) the 
method of collecting the data, and (c) the methods of analysis. When pos-
sible, this disclosure should be made sufficiently in advance of trial so that 
the opposing party can consult its experts and prepare cross-examination. 
The court must decide on a case-by-case basis where to draw the disclo-
sure line.

5.	 An opposing party should be given the opportunity to object to a database 
or to a proposed method of analysis of the database to be offered at trial. 
Objections may be to simple clerical errors or to more complex issues 
relating to the selection of data, the construction of variables, and, on 
occasion, the particular form of statistical analysis to be used. Whenever 
possible, these objections should be resolved before trial.

6.	 The parties should be encouraged to resolve differences as to the appro-
priateness and precision of the data to the extent possible by informal 
conference. The court should make an effort to resolve differences before 
trial.

These suggestions are motivated by the objective of improving the discovery 
process to make it more informative. The fact that these questions may raise some 
doubts or concerns about a particular regression model should not be taken to 
mean that the model does not provide useful information. It does, however, take 
considerable skill for an expert to determine the extent to which information is 
useful when the model being utilized has some shortcomings.

B. �Which Database Information and Analytical Procedures 
Will Aid in Resolving Disputes over Statistical Studies?66

To help resolve disputes over statistical studies, experts should follow the guide-
lines below when presenting database information and analytical procedures:

65.  These sources would include all variables used in the statistical analyses conducted by the 
expert, not simply those variables used in a final analysis on which the expert expects to rely.

66.  For a more complete discussion of these requirements, see The Evolving Role of Statistical 
Assessments as Evidence in the Courts, app. F at 256 (Stephen E. Fienberg ed., 1989) (Recommended 
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1.	 The expert should state clearly the objectives of the study, as well as the time 
frame to which it applies and the statistical population to which the results 
are being projected.

2.	 The expert should report the units of observation (e.g., consumers, busi-
nesses, or employees).

3.	 The expert should clearly define each variable.
4.	 The expert should clearly identify the sample for which data are being 

studied,67 as well as the method by which the sample was obtained.
5.	 The expert should reveal if there are missing data, whether caused by a 

lack of availability (e.g., in business data) or nonresponse (e.g., in survey 
data), and the method used to handle the missing data (e.g., deletion of 
observations).

6.	 The expert should report investigations into errors associated with the 
choice of variables and assumptions underlying the regression model.

7.	 If samples were chosen randomly from a population (i.e., probability sam-
pling procedures were used),68 the expert should make a good-faith effort 
to provide an estimate of a sampling error, the measure of the difference 
between the sample estimate of a parameter (such as the mean of a depen-
dent variable under study), and the (unknown) population parameter (the 
population mean of the variable).69

8.	 If probability sampling procedures were not used, the expert should report 
the set of procedures that was used to minimize sampling errors.

Standards on Disclosure of Procedures Used for Statistical Studies to Collect Data Submitted in Evi-
dence in Legal Cases).

67.  The sample information is important because it allows the expert to make inferences about 
the underlying population.

68.  In probability sampling, each representative of the population has a known probability of 
being in the sample. Probability sampling is ideal because it is highly structured, and in principle, it 
can be replicated by others. Nonprobability sampling is less desirable because it is often subjective, 
relying to a large extent on the judgment of the expert.

69.  Sampling error is often reported in terms of standard errors or confidence intervals. See 
Appendix, infra, for details.
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Appendix: The Basics of Multiple Regression
A. Introduction
This appendix illustrates, through examples, the basics of multiple regression 
analysis in legal proceedings. Often, visual displays are used to describe the rela-
tionship between variables that are used in multiple regression analysis. Figure 2 is 
a scatterplot that relates scores on a job aptitude test (shown on the x-axis) and job 
performance ratings (shown on the y-axis). Each point on the scatterplot shows 
where a particular individual scored on the job aptitude test and how his or her 
job performance was rated. For example, the individual represented by Point A in 
Figure 2 scored 49 on the job aptitude test and had a job performance rating of 62.

The relationship between two variables can be summarized by a correlation 
coefficient, which ranges in value from –1 (a perfect negative relationship) to 
+1 (a perfect positive relationship). Figure 3 depicts three possible relationships 
between the job aptitude variable and the job performance variable. In Figure 3(a), 
there is a positive correlation: In general, higher job performance ratings are 
associated with higher aptitude test scores, and lower job performance ratings 
are associated with lower aptitude test scores. In Figure 3(b), the correlation is 
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Figure 2. Scatterplot of scores on a job aptitude test relative to job performance 
rating.
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negative: Higher job performance ratings are associated with lower aptitude test 
scores, and lower job performance ratings are associated with higher aptitude 
test scores. Positive and negative correlations can be relatively strong or relatively 
weak. If the relationship is sufficiently weak, there is effectively no correlation, as 
is illustrated in Figure 3(c).

Multiple regression analysis goes beyond the calculation of correlations; it is a 
method in which a regression line is used to relate the average of one variable—the 
dependent variable—to the values of other explanatory variables. As a result, regres-
sion analysis can be used to predict the values of one variable using the values of 
others. For example, if average job performance ratings depend on aptitude test scores, 
regression analysis can use information about test scores to predict job performance.
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Figure 3. �Correlation between the job aptitude variable and the job performance 
variable: (a) positive correlation, (b) negative correlation, (c) weak rela-
tionship with no correlation.
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A regression line is the best-fitting straight line through a set of points in a 
scatterplot. If there is only one explanatory variable, the straight line is defined 
by the equation

	 Y = a + bX.	 (1)

In equation (1), a is the intercept of the line with the y-axis when X equals 0, 
and b is the slope—the change in the dependent variable associated with a 1-unit 
change in the explanatory variable. In Figure 4, for example, when the aptitude test 
score is 0, the predicted (average) value of the job performance rating is the inter-
cept, 18.4. Also, for each additional point on the test score, the job performance 
rating increases .73 units, which is given by the slope .73. Thus, the estimated 
regression line is

	 Y X= +184 73. . . 	 (2)

The regression line typically is estimated using the standard method of least 
squares, where the values of a and b are calculated so that the sum of the squared 
deviations of the points from the line are minimized. In this way, positive devia-
tions and negative deviations of equal size are counted equally, and large deviations 
are counted more than small deviations. In Figure 4 the deviation lines are verti-
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cal because the equation is predicting job performance ratings from aptitude test 
scores, not aptitude test scores from job performance ratings.

The important variables that systematically might influence the depen-
dent variable, and for which data can be obtained, typically should be included 
explicitly in a statistical model. All remaining influences, which should be small 
individually, but can be substantial in the aggregate, are included in an additional 
random error term.70 Multiple regression is a procedure that separates the sys-
tematic effects (associated with the explanatory variables) from the random effects 
(associated with the error term) and also offers a method of assessing the success 
of the process.

B. Linear Regression Model
When there are an arbitrary number of explanatory variables, the linear regression 
model takes the following form:

	 Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε	 (3)

where Y represents the dependent variable, such as the salary of an employee, 
and X1 . . . Xk represent the explanatory variables (e.g., the experience of each 
employee and his or her sex, coded as a 1 or 0, respectively). The error term, 
e, represents the collective unobservable influence of any omitted variables. In a 
linear regression, each of the terms being added involves unknown parameters, 
b0, b1, . . . bk,

71 which are estimated by “fitting” the equation to the data using 
least squares.

Each estimated coefficient βk measures how the dependent variable Y 
responds, on average, to a change in the corresponding covariate Xk, after “con-
trolling for” all the other covariates. The informal phrase “controlling for” has 
a specific statistical meaning. Consider the following three-step procedure. First, 
we calculate the residuals from a regression of Y on all covariates other than Xk. 
Second, we calculate the residuals of a regression of Xk on all the other covariates. 
Third, and finally, we regress the first residual variable on the second residual 
variable. The resulting coefficient will be identically equal to βk. Thus, the coeffi

70.  It is clearly advantageous for the random component of the regression relationship to be 
small relative to the variation in the dependent variable.

71.  The variables themselves can appear in many different forms. For example, Y might repre-
sent the logarithm of an employee’s salary, and X1 might represent the logarithm of the employee’s 
years of experience. The logarithmic representation is appropriate when Y increases exponentially as 
X increases—for each unit increase in X, the corresponding increase in Y becomes larger and larger. 
For example, if an expert were to graph the growth of the U.S. population (Y ) over time (t), the 
following equation might be appropriate:

log(Y) = b0 + b1log(t).
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cient in a multiple regression represents the slope of the line “Y, adjusted for all 
covariates other than Xk versus Xk adjusted for all the other covariates.”72

Most statisticians use the least squares regression technique because of its sim-
plicity and its desirable statistical properties. As a result, it also is used frequently 
in legal proceedings.

1. Specifying the regression model

Suppose an expert wants to analyze the salaries of women and men at a large pub-
lishing house to discover whether a difference in salaries between employees with 
similar years of work experience provides evidence of discrimination.73 To begin 
with the simplest case, Y, the salary in dollars per year, represents the dependent 
variable to be explained, and X1 represents the explanatory variable—the number 
of years of experience of the employee. The regression model would be written

	 Y = β0 + β1X1 + ε.	 (4)

In equation (4), b0 and b1 are the parameters to be estimated from the data, 
and e is the random error term. The parameter b0 is the average salary of all 
employees with no experience. The parameter b1 measures the average effect of 
an additional year of experience on the average salary of employees.

2. Regression line

Once the parameters in a regression equation, such as equation (3), have been esti-
mated, the fitted values for the dependent variable can be calculated. If we denote 
the estimated regression parameters, or regression coefficients, for the model in 
equation (3) by β0, β1, . . . βk, the fitted values for Y, denoted Ŷ, are given by

	 Ŷ  = β0 + β1X1 + β2X2 + . . . βkXk.	 (5)

Figure 5 illustrates this for the example involving a single explanatory variable. 
The data are shown as a scatter of points; salary is on the vertical axis, and years 
of experience is on the horizontal axis. The estimated regression line is drawn 
through the data points. It is given by

	 Ŷ  = $15,000 + $2000X1.	 (6)

72.  In econometrics, this is known as ��������������������������������the Frisch–Waugh–Lovell theorem.
73.  The regression results used in this example are based on data for 1715 men and women, 

which were used by the defense in a sex discrimination case against the New York Times that was 
settled in 1978. Professor Orley Ashenfelter, Department of Economics, Princeton University, pro-
vided the data.



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Manual on Scientific Evidence

338

6-5.eps

Years of Experience (X1)

1

30

A

One YearB

Si

b1 = $2,000

Si 21

b0

2 3 4 5 6

S
al

ar
y 

(T
ho

us
an

ds
 o

f D
ol

la
rs

) 
(Y

)
Residual (Yi – Yi)ˆ

Figure 5. Goodness of fit.

Thus, the fitted value for the salary associated with an individual’s years of experi-
ence X1i is given by

	 Ŷ i = β0 + β1X1i (at Point B).	 (7)

The intercept of the straight line is the average value of the dependent variable when 
the explanatory variable or variables are equal to 0; the intercept β0 is shown on 
the vertical axis in Figure 5. Similarly, the slope of the line measures the (average) 
change in the dependent variable associated with a unit increase in an explanatory 
variable; the slope β1 also is shown. In equation (6), the intercept $15,000 indicates 
that employees with no experience earn $15,000 per year. The slope parameter 
implies that each year of experience adds $2000 to an “average” employee’s salary.

Now, suppose that the salary variable is related simply to the sex of the employee. 
The relevant indicator variable, often called a dummy variable, is X2, which is 
equal to 1 if the employee is male, and 0 if the employee is female. Suppose the 
regression of salary Y on X2 yields the following result: Y = $30,449 + $10,979X2. 
The coefficient $10,979 measures the difference between the average salary of 
men and the average salary of women.74

74.  To understand why, note that when X2 equals 0, the average salary for women is 
$30,449 + $10,979*0 = $30,449. Correspondingly, when X2 = 1, the average salary for men 
is $30,449 + $10,979*1 = $41,428. The difference, $41,428 – $30,449, is $10,979.
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a. Regression residuals

For each data point, the regression residual is the difference between the actual 
values and fitted values of the dependent variable. Suppose, for example, that we 
are studying an individual with 3 years of experience and a salary of $27,000. 
According to the regression line in Figure 5, the average salary of an individual 
with 3 years of experience is $21,000. Because the individual’s salary is $6000 
higher than the average salary, the residual (the individual’s salary minus the aver-
age salary) is $6000. In general, the residual e associated with a data point, such as 
Point A in Figure 5, is given by ei = Yi − Ŷ i.  Each data point in the figure has a 
residual, which is the error made by the least squares regression method for that 
individual.

b. Nonlinearities

Nonlinear models account for the possibility that the effect of an explanatory 
variable on the dependent variable may vary in magnitude as the level of the 
explanatory variable changes. One useful nonlinear model uses interactions among 
variables to produce this effect. For example, suppose that

	 S = β1 +β2SEX + β3EXP + β4(EXP)(SEX) + ε	 (8)

where S is annual salary, SEX is equal to 1 for women and 0 for men, EXP rep-
resents years of job experience, and e is a random error term. The coefficient b2 
measures the difference in average salary (across all experience levels) between 
men and women for employees with no experience. The coefficient b3 measures 
the effect of experience on salary for men (when SEX = 0), and the coefficient 
b4 measures the difference in the effect of experience on salary between men and 
women. It follows, for example, that the effect of 1 year of experience on salary 
for men is b3, whereas the comparable effect for women is b3 + b4.

75

C. Interpreting Regression Results
To explain how regression results are interpreted, we can expand the earlier exam-
ple associated with Figure 5 to consider the possibility of an additional explanatory 
variable—the square of the number of years of experience, X3. The X3 variable is 
designed to capture the fact that for most individuals, salaries increase with experi-
ence, but eventually salaries tend to level off. The estimated regression line using 
the third additional explanatory variable, as well as the first explanatory variable 
for years of experience (X1) and the dummy variable for sex (X2), is

75.  Estimating a regression in which there are interaction terms for all explanatory variables, 
as in equation (8), is essentially the same as estimating two separate regressions, one for men and one 
for women.
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	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3.	 (9)

The importance of including relevant explanatory variables in a regression 
model is illustrated by the change in the regression results after the X3 and X1 
variables are added. The coefficient on the variable X2 measures the difference 
in the salaries of men and women while controlling for the effect of experience. 
The differential of $1675 is substantially lower than the previously measured dif-
ferential of $10,979. Clearly, failure to control for job experience in this example 
leads to an overstatement of the difference in salaries between men and women.

Now consider the interpretation of the explanatory variables for experience, 
X1 and X3. The positive sign on the X1 coefficient shows that salary increases with 
experience. The negative sign on the X3 coefficient indicates that the rate of sal-
ary increase decreases with experience. To determine the combined effect of the 
variables X1 and X3, some simple calculations can be made. For example, consider 
how the average salary of women (X2 = 0) changes with the level of experience. 
As experience increases from 0 to 1 year, the average salary increases by $2251, 
from $14,085 to $16,336. However, women with 2 years of experience earn only 
$2179 more than women with 1 year of experience, and women with 1 year of 
experience earn only $2127 more than women with 2 years. Furthermore, women 
with 7 years of experience earn $28,582 per year, which is only $1855 more than 
the $26,727 earned by women with 6 years of experience.76 Figure 6 illustrates 
the results: The regression line shown is for women’s salaries; the corresponding 
line for men’s salaries would be parallel and $1675 higher.

D. Determining the Precision of the Regression Results
Least squares regression provides not only parameter estimates that indicate the 
direction and magnitude of the effect of a change in the explanatory variable on 
the dependent variable, but also an estimate of the reliability of the parameter 
estimates and a measure of the overall goodness of fit of the regression model. 
Each of these factors is considered in turn.

1. Standard errors of the coefficients and t-statistics 

Estimates of the true but unknown parameters of a regression model are numbers 
that depend on the particular sample of observations under study. If a different 
sample were used, a different estimate would be calculated.77 If the expert con-
tinued to collect more and more samples and generated additional estimates, as 
might happen when new data became available over time, the estimates of each 

76.  These numbers can be calculated by substituting different values of X1 and X3 in equation (9).
77.  The least squares formula that generates the estimates is called the least squares estimator, 

and its values vary from sample to sample.
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parameter would follow a probability distribution (i.e., the expert could determine 
the percentage or frequency of the time that each estimate occurs). This probabil-
ity distribution can be summarized by a mean and a measure of dispersion around 
the mean, a standard deviation, which usually is referred to as the standard error 
of the coefficient, or the standard error (SE).78

Suppose, for example, that an expert is interested in estimating the average 
price paid for a gallon of unleaded gasoline by consumers in a particular geo-
graphic area of the United States at a particular point in time. The mean price for 
a sample of 10 gas stations might be $1.25, while the mean for another sample 
might be $1.29, and the mean for a third, $1.21. On this basis, the expert also 
could calculate the overall mean price of gasoline to be $1.25 and the standard 
deviation to be $0.04.

Least squares regression generalizes this result, by calculating means whose 
values depend on one or more explanatory variables. The standard error of a 
regression coefficient tells the expert how much parameter estimates are likely 
to vary from sample to sample. The greater the variation in parameter estimates 
from sample to sample, the larger the standard error and consequently the less 
reliable the regression results. Small standard errors imply results that are likely to 

78.  See David H. Kaye & David A. Freedman, Reference Guide on Statistics, Section IV.A, 
in this manual.
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be similar from sample to sample, whereas results with large standard errors show 
more variability.

Under appropriate assumptions, the least squares estimators provide “best” 
determinations of the true underlying parameters.79 In fact, least squares has sev-
eral desirable properties. First, least squares estimators are unbiased. Intuitively, 
this means that if the regression were calculated repeatedly with different samples, 
the average of the many estimates obtained for each coefficient would be the true 
parameter. Second, least squares estimators are consistent; if the sample were very 
large, the estimates obtained would come close to the true parameters. Third, 
least squares is efficient, in that its estimators have the smallest variance among all 
(linear) unbiased estimators.

If the further assumption is made that the probability distribution of each of 
the error terms is known, statistical statements can be made about the precision 
of the coefficient estimates. For relatively large samples (often, thirty or more 
data points will be sufficient for regressions with a small number of explanatory 
variables), the probability that the estimate of a parameter lies within an interval 
of 2 standard errors around the true parameter is approximately .95, or 95%. A 
frequent, although not always appropriate, assumption in statistical work is that the 
error term follows a normal distribution, from which it follows that the estimated 
parameters are normally distributed. The normal distribution has the property 
that the area within 1.96 standard errors of the mean is equal to 95% of the total 
area. Note that the normality assumption is not necessary for least squares to be 
used, because most of the properties of least squares apply regardless of normality.

In general, for any parameter estimate b, the expert can construct an interval 
around b such that there is a 95% probability that the interval covers the true 
parameter. This 95% confidence interval80 is given by81

	 b ± 1.96 (SE of b).	 (10) 

The expert can test the hypothesis that a parameter is actually equal to 0 (often 
stated as testing the null hypothesis) by looking at its t-statistic, which is defined as

	

t
b

b
= ( )SE

. 	 (11)

79.  The necessary assumptions of the regression model include (a) the model is specified cor-
rectly, (b) errors associated with each observation are drawn randomly from the same probability 
distribution and are independent of each other, (c) errors associated with each observation are indepen-
dent of the corresponding observations for each of the explanatory variables in the model, and (d) no 
explanatory variable is correlated perfectly with a combination of other variables.

80.  Confidence intervals are used commonly in statistical analyses because the expert can never 
be certain that a parameter estimate is equal to the true population parameter.

81.  If the number of data points in the sample is small, the standard error must be multiplied 
by a number larger than 1.96.
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If the t-statistic is less than 1.96 in magnitude, the 95% confidence interval around 
b must include 0.82 Because this means that the expert cannot reject the hypothesis 
that b equals 0, the estimate, whatever it may be, is said to be not statistically 
significant. Conversely, if the t-statistic is greater than 1.96 in absolute value, the 
expert concludes that the true value of b is unlikely to be 0 (intuitively, b is “too 
far” from 0 to be consistent with the true value of b being 0). In this case, the 
expert rejects the hypothesis that b equals 0 and calls the estimate statistically sig-
nificant. If the null hypothesis b equals 0 is true, using a 95% confidence level will 
cause the expert to falsely reject the null hypothesis 5% of the time. Consequently, 
results often are said to be significant at the 5% level.83

As an example, consider a more complete set of regression results associated 
with the salary regression described in equation (9):

	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3	
			   (1577)	 (140)	 (1435)	 (3.4)	
	 t 	 = 	 8.9	 16.5	 1.2	 −10.8.	 (12)

The standard error of each estimated parameter is given in parentheses directly 
below the parameter, and the corresponding t-statistics appear below the standard 
error values.

Consider the coefficient on the dummy variable X2. It indicates that $1675 
is the best estimate of the mean salary difference between men and women. 
However, the standard error of $1435 is large in relation to its coefficient $1675. 
Because the standard error is relatively large, the range of possible values for 
measuring the true salary difference, the true parameter, is great. In fact, a 95% 
confidence interval is given by

	 $1675 ± $1435 ∙ 1.96 = $1675 ± $2813.	 (13)

In other words, the expert can have 95% confidence that the true value of the 
coefficient lies between –$1138 and $4488. Because this range includes 0, the 
effect of sex on salary is said to be insignificantly different from 0 at the 5% level. 
The t value of 1.2 is equal to $1675 divided by $1435. Because this t-statistic is 
less than 1.96 in magnitude (a condition equivalent to the inclusion of a 0 in the 
above confidence interval), the sex variable again is said to be an insignificant 
determinant of salary at the 5% level of significance.

82.  The t-statistic applies to any sample size. As the sample gets large, the underlying distribution, 
which is the source of the t-statistic (Student’s t-distribution), approximates the normal distribution.

83.  A t-statistic of 2.57 in magnitude or greater is associated with a 99% confidence level, or a 
1% level of significance, that includes a band of 2.57 standard deviations on either side of the estimated 
coefficient.
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Note also that experience is a highly significant determinant of salary, because 
both the X1 and the X3 variables have t-statistics substantially greater than 1.96 in 
magnitude. More experience has a significant positive effect on salary, but the size 
of this effect diminishes significantly with experience.

2. Goodness of fit

Reported regression results usually contain not only the point estimates of the 
parameters and their standard errors or t-statistics, but also other information that 
tells how closely the regression line fits the data. One statistic, the standard error of 
the regression (SER), is an estimate of the overall size of the regression residuals.84 
An SER of 0 would occur only when all data points lie exactly on the regression 
line—an extremely unlikely possibility. Other things being equal, the larger the 
SER, the poorer the fit of the data to the model.

For a normally distributed error term, the expert would expect approximately 
95% of the data points to lie within 2 SERs of the estimated regression line, as 
shown in Figure 7 (in Figure 7, the SER is approximately $5000).

84.  More specifically, it is a measure of the standard deviation of the regression error ε. It some-
times is called the root mean squared error of the regression line.

6-7.eps

Experience (X1)

2 SERs

2 SERs

Regression line

S
al

ar
y 

(Y
)

Figure 7. Standard error of the regression.



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Guide on Multiple Regression

345

R-squared (R2) is a statistic that measures the percentage of variation in the 
dependent variable that is accounted for by all the explanatory variables.85 Thus, 
R2

 provides a measure of the overall goodness of fit of the multiple regression 
equation. Its value ranges from 0 to 1. An R2

 of 0 means that the explanatory 
variables explain none of the variation of the dependent variable; an R2

 of 1 means 
that the explanatory variables explain all of the variation. The R2

 associated with 
equation (12) is .56. This implies that the three explanatory variables explain 56% 
of the variation in salaries.

What level of R2, if any, should lead to a conclusion that the model is satis-
factory? Unfortunately, there is no clear-cut answer to this question, because the 
magnitude of R2 depends on the characteristics of the data being studied and, in 
particular, whether the data vary over time or over individuals. Typically, an R2 
is low in cross-sectional studies in which differences in individual behavior are 
explained. It is likely that these individual differences are caused by many factors 
that cannot be measured. As a result, the expert cannot hope to explain most of 
the variation. In time-series studies, in contrast, the expert is explaining the move-
ment of aggregates over time. Because most aggregate time series have substantial 
growth, or trend, in common, it will not be difficult to “explain” one time series 
using another time series, simply because both are moving together. It follows as 
a corollary that a high R2

 does not by itself mean that the variables included in 
the model are the appropriate ones.

As a general rule, courts should be reluctant to rely solely on a statistic such as R2
 

to choose one model over another. Alternative procedures and tests are available.86

3. Sensitivity of least squares regression results

The least squares regression line can be sensitive to extreme data points. This 
sensitivity can be seen most easily in Figure 8. Assume initially that there are only 
three data points, A, B, and C, relating information about X1 to the variable Y. 
The least squares line describing the best-fitting relationship between Points A, B, 
and C is represented by Line 1. Point D is called an outlier because it lies far from 
the regression line that fits the remaining points. When a new, best-fitting least 
squares line is reestimated to include Point D, Line 2 is obtained. Figure 8 shows 
that the outlier Point D is an influential data point, because it has a dominant effect 
on the slope and intercept of the least squares line. Because least squares attempts 
to minimize the sum of squared deviations, the sensitivity of the line to individual 
points sometimes can be substantial.87

85.  The variation is the square of the difference between each Y value and the average Y value, 
summed over all the Y values.

86.  These include F-tests and specification error tests. See Pindyck & Rubinfeld, supra note 23, 
at 88–95, 128–36, 194–98.

87.  This sensitivity is not always undesirable. In some instances it may be much more important 
to predict Point D when a big change occurs than to measure the effects of small changes accurately.
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What makes the influential data problem even more difficult is that the effect 
of an outlier may not be seen readily if deviations are measured from the final 
regression line. The reason is that the influence of Point D on Line 2 is so sub-
stantial that its deviation from the regression line is not necessarily larger than the 
deviation of any of the remaining points from the regression line.88 Although they 
are not as popular as least squares, alternative estimation techniques that are less 
sensitive to outliers, such as robust estimation, are available.

E. Reading Multiple Regression Computer Output
Statistical computer packages that report multiple regression analyses vary to some 
extent in the information they provide and the form that the information takes. 
Table 1 contains a sample of the basic computer output that is associated with 
equation (9).

88.  The importance of an outlier also depends on its location in the dataset. Outliers associated 
with relatively extreme values of explanatory variables are likely to be especially influential. See, e.g., 
Fisher v. Vassar College, 70 F.3d 1420, 1436 (2d Cir. 1995) (court required to include assessment of 
“service in academic community,” because concept was too amorphous and not a significant factor in 
tenure review), rev’d on other grounds, 114 F.3d 1332 (2d Cir. 1997) (en banc).



Copyright © National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence: Third Edition

Reference Guide on Multiple Regression

347

Table 1. Regression Output

Dependent variable: Y SSE 62346266124 F-test 174.71
DFE 561 Prob > F 0.0001
MSE 111134164 R2 0.556

Variable DF
Parameter
Estimate

Standard  
Error t-Statistic Prob >|t|

Intercept 1 14,084.89 1577.484 8.9287 .0001

X1 1 2323.17 140.70 16.5115 .0001

X2 1 1675.11 1435.422 1.1670 .2437

X3 1 −36.71 3.41 −10.7573 .0001

Note: SSE = sum of squared errors; DFE = degrees of freedom associated with the error term; MSE 
= mean squared error; DF = degrees of freedom; Prob = probability.

In the lower portion of Table 1, note that the parameter estimates, the standard 
errors, and the t-statistics match the values given in equation (12).89 The variable 
“Intercept” refers to the constant term b0 in the regression. The column “DF” 
represents degrees of freedom. The “1” signifies that when the computer calculates 
the parameter estimates, each variable that is added to the linear regression adds 
an additional constraint that must be satisfied. The column labeled “Prob > |t|” 
lists the two-tailed p-values associated with each estimated parameter; the p-value 
measures the observed significance level—the probability of getting a test statistic as 
extreme or more extreme than the observed number if the model parameter is in 
fact 0. The very low p-values on the variables X1 and X3 imply that each variable 
is statistically significant at less than the 1% level—both highly significant results. 
In contrast, the X2 coefficient is only significant at the 24% level, implying that 
it is insignificant at the traditional 5% level. Thus, the expert cannot reject with 
confidence the null hypothesis that salaries do not differ by sex after the expert has 
accounted for the effect of experience.

The top portion of Table 1 provides data that relate to the goodness of fit 
of the regression equation. The sum of squared errors (SSE) measures the sum 
of the squares of the regression residuals—the sum that is minimized by the least 
squares procedure. The degrees of freedom associated with the error term (DFE) 
are given by the number of observations minus the number of parameters that 
were estimated. The mean squared error (MSE) measures the variance of the 
error term (the square of the standard error of the regression). MSE is equal to 
SSE divided by DFE.

89.  Computer programs give results to more decimal places than are meaningful. This added 
detail should not be seen as evidence that the regression results are exact.
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The R2 of 0.556 indicates that 55.6% of the variation in salaries is explained 
by the regression variables, X1, X2, and X3. Finally, the F-test is a test of the null 
hypothesis that all regression coefficients (except the intercept) are jointly equal 
to 0—that there is no linear association between the dependent variable and any of the 
explanatory variables. This is equivalent to the null hypothesis that R2 is equal to 0. In 
this case, the F-ratio of 174.71 is sufficiently high that the expert can reject the null 
hypothesis with a very high degree of confidence (i.e., with a 1% level of significance).

F. Forecasting
In general, a forecast is a prediction made about the values of the dependent vari-
able using information about the explanatory variables. Often, ex ante forecasts 
are performed; in this situation, values of the dependent variable are predicted 
beyond the sample (e.g., beyond the time period in which the model has been 
estimated). However, ex post forecasts are frequently used in damage analyses.90 
An ex post forecast has a forecast period such that all values of the dependent and 
explanatory variables are known; ex post forecasts can be checked against existing 
data and provide a direct means of evaluation.

For example, to calculate the forecast for the salary regression discussed above, 
the expert uses the estimated salary equation

	 Ŷ  = $14,085 + $2323X1 + $1675X2 − $36X3.	 (14)

To predict the salary of a man with 2 years’ experience, the expert calculates

	 Ŷ (2) = $14,085 + ($2323 ∙ 2) + $1675 − ($36 ∙ 2) = $20,262.	 (15)

The degree of accuracy of both ex ante and ex post forecasts can be calculated 
provided that the model specification is correct and the errors are normally dis-
tributed and independent. The statistic is known as the standard error of forecast 
(SEF). The SEF measures the standard deviation of the forecast error that is made 
within a sample in which the explanatory variables are known with certainty.91

 The 

90.  Frequently, in cases involving damages, the question arises, what the world would have been 
like had a certain event not taken place. For example, in a price-fixing antitrust case, the expert can 
ask what the price of a product would have been had a certain event associated with the price-fixing 
agreement not occurred. If prices would have been lower, the evidence suggests impact. If the expert 
can predict how much lower they would have been, the data can help the expert develop a numerical 
estimate of the amount of damages.

91.  There are actually two sources of error implicit in the SEF. The first source arises because 
the estimated parameters of the regression model may not be exactly equal to the true regression 
parameters. The second source is the error term itself; when forecasting, the expert typically sets the 
error equal to 0 when a turn of events not taken into account in the regression model may make it 
appropriate to make the error positive or negative.
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SEF can be used to determine how accurate a given forecast is. In equation (15), 
the SEF associated with the forecast of $20,262 is approximately $5000. If a large 
sample size is used, the probability is roughly 95% that the predicted salary will be 
within 1.96 standard errors of the forecasted value. In this case, the appropriate 
95% interval for the prediction is $10,822 to $30,422. Because the estimated model 
does not explain salaries effectively, the SEF is large, as is the 95% interval. A more 
complete model with additional explanatory variables would result in a lower SEF 
and a smaller 95% interval for the prediction.

A danger exists when using the SEF, which applies to the standard errors of 
the estimated coefficients as well. The SEF is calculated on the assumption that the 
model includes the correct set of explanatory variables and the correct functional 
form. If the choice of variables or the functional form is wrong, the estimated fore-
cast error may be misleading. In some instances, it may be smaller, perhaps substan-
tially smaller, than the true SEF; in other instances, it may be larger, for example, if 
the wrong variables happen to capture the effects of the correct variables.

The difference between the SEF and the SER is shown in Figure 9. The SER 
measures deviations within the sample. The SEF is more general, because it cal-
culates deviations within or without the sample period. In general, the difference 
between the SEF and the SER increases as the values of the explanatory variables 
increase in distance from the mean values. Figure 9 shows the 95% prediction 
interval created by the measurement of two SEFs about the regression line.
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G. A Hypothetical Example
Jane Thompson filed suit in federal court alleging that officials in the police 
department discriminated against her and a class of other female police officers in 
violation of Title VII of the Civil Rights Act of 1964, as amended. On behalf of 
the class, Ms. Thompson alleged that she was paid less than male police officers 
with equivalent skills and experience. Both plaintiff and defendant used expert 
economists with econometric expertise to present statistical evidence to the court 
in support of their positions.

Plaintiff’s expert pointed out that the mean salary of the 40 female officers was 
$30,604, whereas the mean salary of the 60 male officers was $43,077. To show 
that this difference was statistically significant, the expert put forward a regression 
of salary (SALARY) on a constant term and a dummy indicator variable (FEM) 
equal to 1 for each female and 0 for each male. The results were as follows:

SALARY = $43,077 −$12,373*FEM 
Standard Error	 ($1528)	 ($2416)
p-value	 <.01	 <.01
R2 = .22

The −$12,373 coefficient on the FEM variable measures the mean difference 
between male and female salaries. Because the standard error is approximately one-
fifth of the value of the coefficient, this difference is statistically significant at the 5% 
(and indeed at the 1%) level. If this is an appropriate regression model (in terms of its 
implicit characterization of salary determination), one can conclude that it is highly 
unlikely that the difference in salaries between men and women is due to chance.

The defendant’s expert testified that the regression model put forward was the 
wrong model because it failed to account for the fact that males (on average) had 
substantially more experience than females. The relatively low R2 was an indica-
tion that there was substantial unexplained variation in the salaries of male and 
female officers. An examination of data relating to years spent on the job showed 
that the average male experience was 8.2 years, whereas the average for females 
was only 3.5 years. The defense expert then presented a regression analysis that 
added an additional explanatory variable (i.e., a covariate), the years of experience 
of each police officer (EXP). The new regression results were as follows:

SALARY = $28,049 – $3860*FEM + $1833*EXP
Standard Error	  (2513)	 ($2347)	 ($265)
p-value	  <.01	  <.11	 <.01
R2 = .47

Experience is itself a statistically significant explanatory variable, with a 
p-value of less than .01. Moreover, the difference between male and female 
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salaries, holding experience constant, is only $3860, and this difference is not sta-
tistically significant at the 5% level. The defense expert was able to testify on this 
basis that the court could not rule out alternative explanations for the difference 
in salaries other than the plaintiff’s claim of discrimination.

The debate did not end here. On rebuttal, the plaintiff’s expert made three 
distinct points. First, whether $3860 was statistically significant or not, it was prac-
tically significant, representing a salary difference of more than 10% of the mean 
female officers’ salaries. Second, although the result was not statistically significant at 
the 5% level, it was significant at the 11% level. If the regression model were valid, 
there would be approximately an 11% probability that one would err by concluding 
that the mean salary difference between men and women was a result of chance.

Third, and most importantly, the expert testified that the regression model 
was not correctly specified. Further analysis by the expert showed that the value of 
an additional year of experience was $2333 for males on average, but only $1521 
for females. Based on supporting testimonial experience, the expert testified that 
one could not rule out the possibility that the mechanism by which the police 
department discriminated against females was by rewarding males more for their 
experience than females. The expert made this point clear by running an addi-
tional regression in which a further covariate was added to the model. The new 
variable was an interaction variable, INT, measured as the product of the FEM 
and EXP variables. The regression results were as follows:

SALARY = $35,122 − $5250*FEM + $2333*EXP − $812*FEM*EXP
St. Error	 ($2825)	 ($347)	 ($265)	  ($185)
p-value	 <.01	 <.11	 <.01 	 <.04
R2 = .65

The plaintiff’s expert noted that for all males in the sample, FEM = 0, in which 
case the regression results are given by the equation

SALARY = $35,122 + $2333*EXP

However, for females, FEM = 1, in which the corresponding equation is

SALARY = $29,872 + $1521*EXP

It appears, therefore, that females are discriminated against not only when hired 
(i.e., when EXP = 0), but also in the reward they get as they accumulate more 
and more experience.

The debate between the experts continued, focusing less on the statistical inter-
pretation of any one particular regression model, but more on the model choice 
itself, and not simply on statistical significance, but also with regard to practical 
significance.
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Glossary
The following terms and definitions are adapted from a variety of sources, includ-
ing A Dictionary of Epidemiology (John M. Last et al., eds., 4th ed. 2000) and 
Robert S. Pindyck & Daniel L. Rubinfeld, Econometric Models and Economic 
Forecasts (4th ed. 1998).

alternative hypothesis. See hypothesis test.

association. The degree of statistical dependence between two or more events or 
variables. Events are said to be associated when they occur more frequently 
together than one would expect by chance.

bias. Any effect at any stage of investigation or inference tending to produce 
results that depart systematically from the true values (i.e., the results are 
either too high or too low). A biased estimator of a parameter differs on 
average from the true parameter.

coefficient. An estimated regression parameter.

confidence interval. An interval that contains a true regression parameter with 
a given degree of confidence.

consistent estimator. An estimator that tends to become more and more accu-
rate as the sample size grows.

correlation. A statistical means of measuring the linear association between vari-
ables. Two variables are correlated positively if, on average, they move in the 
same direction; two variables are correlated negatively if, on average, they 
move in opposite directions.

covariate. A variable that is possibly predictive of an outcome under study; an 
explanatory variable.

cross-sectional analysis. A type of multiple regression analysis in which each 
data point is associated with a different unit of observation (e.g., an individual 
or a firm) measured at a particular point in time.

degrees of freedom (DF). The number of observations in a sample minus the 
number of estimated parameters in a regression model. A useful statistic in 
hypothesis testing.

dependent variable. The variable to be explained or predicted in a multiple 
regression model.

dummy variable. A variable that takes on only two values, usually 0 and 1, with 
one value indicating the presence of a characteristic, attribute, or effect (1), 
and the other value indicating its absence (0).

efficient estimator. An estimator of a parameter that produces the greatest pre-
cision possible.

error term. A variable in a multiple regression model that represents the cumula-
tive effect of a number of sources of modeling error.
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estimate. The calculated value of a parameter based on the use of a particular 
sample.

estimator. The sample statistic that estimates the value of a population parameter 
(e.g., a regression parameter); its values vary from sample to sample.

ex ante forecast. A prediction about the values of the dependent variable that go 
beyond the sample; consequently, the forecast must be based on predictions 
for the values of the explanatory variables in the regression model.

explanatory variable. A variable that is associated with changes in a dependent 
variable.

ex post forecast. A prediction about the values of the dependent variable made 
during a period in which all values of the explanatory and dependent variables 
are known. Ex post forecasts provide a useful means of evaluating the fit of 
a regression model.

F-test. A statistical test (based on an F-ratio) of the null hypothesis that a group of 
explanatory variables are jointly equal to 0. When applied to all the explana-
tory variables in a multiple regression model, the F-test becomes a test of the 
null hypothesis that R2

 equals 0.

feedback. When changes in an explanatory variable affect the values of the 
dependent variable, and changes in the dependent variable also affect the 
explanatory variable. When both effects occur at the same time, the two 
variables are described as being determined simultaneously.

fitted value. The estimated value for the dependent variable; in a linear regres-
sion, this value is calculated as the intercept plus a weighted average of the 
values of the explanatory variables, with the estimated parameters used as 
weights.

heteroscedasticity. When the error associated with a multiple regression model 
has a nonconstant variance; that is, the error values associated with some 
observations are typically high, while the values associated with other obser-
vations are typically low.

hypothesis test. A statement about the parameters in a multiple regression model. 
The null hypothesis may assert that certain parameters have specified values 
or ranges; the alternative hypothesis would specify other values or ranges.

independence. When two variables are not correlated with each other (in the 
population).

independent variable. An explanatory variable that affects the dependent vari-
able but that is not affected by the dependent variable.

influential data point. A data point whose deletion from a regression sample 
causes one or more estimated regression parameters to change substantially.

interaction variable. The product of two explanatory variables in a regression 
model. Used in a particular form of nonlinear model.
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intercept. The value of the dependent variable when each of the explanatory 
variables takes on the value of 0 in a regression equation.

least squares. A common method for estimating regression parameters. Least 
squares minimizes the sum of the squared differences between the actual 
values of the dependent variable and the values predicted by the regression 
equation.

linear regression model. A regression model in which the effect of a change in 
each of the explanatory variables on the dependent variable is the same, no 
matter what the values of those explanatory variables.

mean (sample). An average of the outcomes associated with a probability dis-
tribution, where the outcomes are weighted by the probability that each will 
occur.

mean squared error (MSE). The estimated variance of the regression error, 
calculated as the average of the sum of the squares of the regression residuals.

model. A representation of an actual situation.

multicollinearity. When two or more variables are highly correlated in a mul-
tiple regression analysis. Substantial multicollinearity can cause regression 
parameters to be estimated imprecisely, as reflected in relatively high standard 
errors.

multiple regression analysis. A statistical tool for understanding the relationship 
between two or more variables.

nonlinear regression model. A model having the property that changes in 
explanatory variables will have differential effects on the dependent variable 
as the values of the explanatory variables change.

normal distribution. A bell-shaped probability distribution having the property 
that about 95% of the distribution lies within 2 standard deviations of the 
mean.

null hypothesis. In regression analysis the null hypothesis states that the results 
observed in a study with respect to a particular variable are no different from 
what might have occurred by chance, independent of the effect of that vari-
able. See hypothesis test.

one-tailed test. A hypothesis test in which the alternative to the null hypothesis 
that a parameter is equal to 0 is for the parameter to be either positive or 
negative, but not both.

outlier. A data point that is more than some appropriate distance from a regres-
sion line that is estimated using all the other data points in the sample.

p-value. The significance level in a statistical test; the probability of getting a test 
statistic as extreme or more extreme than the observed value. The larger the 
p-value, the more likely that the null hypothesis is valid.

parameter. A numerical characteristic of a population or a model.
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perfect collinearity. When two or more explanatory variables are correlated 
perfectly.

population. All the units of interest to the researcher; also, universe.

practical significance. Substantive importance. Statistical significance does not 
ensure practical significance, because, with large samples, small differences 
can be statistically significant.

probability distribution. The process that generates the values of a random vari-
able. A probability distribution lists all possible outcomes and the probability 
that each will occur.

probability sampling. A process by which a sample of a population is chosen 
so that each unit of observation has a known probability of being selected.

quasi-experiment (or natural experiment). A naturally occurring instance 
of observable phenomena that yield data that approximate a controlled 
experiment. 

R-squared (R2). A statistic that measures the percentage of the variation in the 
dependent variable that is accounted for by all of the explanatory variables in 
a regression model. R-squared is the most commonly used measure of good-
ness of fit of a regression model. 

random error term. A term in a regression model that reflects random error 
(sampling error) that is the result of chance. As a consequence, the result 
obtained in the sample differs from the result that would be obtained if the 
entire population were studied.

regression coefficient. Also, regression parameter. The estimate of a population 
parameter obtained from a regression equation that is based on a particular 
sample.

regression residual. The difference between the actual value of a dependent 
variable and the value predicted by the regression equation.

robust estimation. An alternative to least squares estimation that is less sensitive 
to outliers.

robustness. A statistic or procedure that does not change much when data or 
assumptions are slightly modified is robust.

sample. A selection of data chosen for a study; a subset of a population.

sampling error. A measure of the difference between the sample estimate of a 
parameter and the population parameter.

scatterplot. A graph showing the relationship between two variables in a study; 
each dot represents one subject. One variable is plotted along the horizontal 
axis; the other variable is plotted along the vertical axis.

serial correlation. The correlation of the values of regression errors over time.
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slope. The change in the dependent variable associated with a one-unit change 
in an explanatory variable.

spurious correlation. When two variables are correlated, but one is not the 
cause of the other.

standard deviation. The square root of the variance of a random variable. The 
variance is a measure of the spread of a probability distribution about its mean; 
it is calculated as a weighted average of the squares of the deviations of the 
outcomes of a random variable from its mean.

standard error of forecast (SEF). An estimate of the standard deviation of the 
forecast error; it is based on forecasts made within a sample in which the values 
of the explanatory variables are known with certainty.

standard error of the coefficient; standard error (SE). A measure of the 
variation of a parameter estimate or coefficient about the true parameter. The 
standard error is a standard deviation that is calculated from the probability 
distribution of estimated parameters.

standard error of the regression (SER). An estimate of the standard deviation 
of the regression error; it is calculated as the square root of the average of the 
squares of the residuals associated with a particular multiple regression analysis.

statistical significance. A test used to evaluate the degree of association between 
a dependent variable and one or more explanatory variables. If the calculated 
p-value is smaller than 5%, the result is said to be statistically significant (at 
the 5% level). If p is greater than 5%, the result is statistically insignificant 
(at the 5% level).

t-statistic. A test statistic that describes how far an estimate of a parameter is from 
its hypothesized value (i.e., given a null hypothesis). If a t-statistic is suffi-
ciently large (in absolute magnitude), an expert can reject the null hypothesis.

t-test. A test of the null hypothesis that a regression parameter takes on a particu-
lar value, usually 0. The test is based on the t-statistic.

time-series analysis. A type of multiple regression analysis in which each data 
point is associated with a particular unit of observation (e.g., an individual or 
a firm) measured at different points in time.

two-tailed test. A hypothesis test in which the alternative to the null hypothesis 
that a parameter is equal to 0 is for the parameter to be either positive or 
negative, or both.

variable. Any attribute, phenomenon, condition, or event that can have two or 
more values.

variable of interest. The explanatory variable that is the focal point of a par-
ticular study or legal issue.
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JJ ust over a quarter century ago, Edward Leamer (1983) refl ected on the state of ust over a quarter century ago, Edward Leamer (1983) refl ected on the state of 
empirical work in economics. He urged empirical researchers to “take the con empirical work in economics. He urged empirical researchers to “take the con 
out of econometrics” and memorably observed (p. 37): “Hardly anyone takes out of econometrics” and memorably observed (p. 37): “Hardly anyone takes 

data analysis seriously. Or perhaps more accurately, hardly anyone takes anyone data analysis seriously. Or perhaps more accurately, hardly anyone takes anyone 
else’s data analysis seriously.” Leamer was not alone; Hendry (1980), Sims (1980), else’s data analysis seriously.” Leamer was not alone; Hendry (1980), Sims (1980), 
and others writing at about the same time were similarly disparaging of empirical and others writing at about the same time were similarly disparaging of empirical 
practice. Reading these commentaries as late-1980s Ph.D. students, we wondered practice. Reading these commentaries as late-1980s Ph.D. students, we wondered 
about the prospects for a satisfying career doing applied work. Perhaps credible about the prospects for a satisfying career doing applied work. Perhaps credible 
empirical work in economics is a pipe dream. Here we address the questions of empirical work in economics is a pipe dream. Here we address the questions of 
whether the quality and the credibility of empirical work have increased since whether the quality and the credibility of empirical work have increased since 
Leamer’s pessimistic assessment. Our views are necessarily colored by the areas of Leamer’s pessimistic assessment. Our views are necessarily colored by the areas of 
applied microeconomics in which we are active, but we look over the fence at other applied microeconomics in which we are active, but we look over the fence at other 
areas as well.areas as well.

Leamer (1983) diagnosed his contemporaries’ empirical work as suffering Leamer (1983) diagnosed his contemporaries’ empirical work as suffering 
from a distressing lack of robustness to changes in key assumptions—assump-from a distressing lack of robustness to changes in key assumptions—assump-
tions he called “whimsical” because one seemed as good as another. The remedy tions he called “whimsical” because one seemed as good as another. The remedy 
he proposed was sensitivity analysis, in which researchers show how their results he proposed was sensitivity analysis, in which researchers show how their results 
vary with changes in specifi cation or functional form. Leamer’s critique had a vary with changes in specifi cation or functional form. Leamer’s critique had a 
refreshing emperor’s-new-clothes earthiness that we savored on fi rst reading and refreshing emperor’s-new-clothes earthiness that we savored on fi rst reading and 
still enjoy today. But we’re happy to report that Leamer’s complaint that “hardly still enjoy today. But we’re happy to report that Leamer’s complaint that “hardly 
anyone takes anyone else’s data analysis seriously” no longer seems justifi ed. anyone takes anyone else’s data analysis seriously” no longer seems justifi ed. 
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Empirical microeconomics has experienced a credibility revolution, with a conse-Empirical microeconomics has experienced a credibility revolution, with a conse-
quent increase in policy relevance and scientifi c impact. Sensitivity analysis played quent increase in policy relevance and scientifi c impact. Sensitivity analysis played 
a role in this, but as we see it, the primary engine driving improvement has been a role in this, but as we see it, the primary engine driving improvement has been 
a focus on the quality of empirical research designs. This emphasis on research a focus on the quality of empirical research designs. This emphasis on research 
design is in the spirit of Leamer’s critique, but it did not feature in his remedy.design is in the spirit of Leamer’s critique, but it did not feature in his remedy.

The advantages of a good research design are perhaps most easily apparent in The advantages of a good research design are perhaps most easily apparent in 
research using random assignment, which not coincidentally includes some of the research using random assignment, which not coincidentally includes some of the 
most infl uential microeconometric studies to appear in recent years. For example, most infl uential microeconometric studies to appear in recent years. For example, 
in a pioneering effort to improve child welfare, the Progresa program in Mexico in a pioneering effort to improve child welfare, the Progresa program in Mexico 
offered cash transfers to randomly selected mothers, contingent on participation in offered cash transfers to randomly selected mothers, contingent on participation in 
prenatal care, nutritional monitoring of children, and the children’s regular school prenatal care, nutritional monitoring of children, and the children’s regular school 
attendance (Gertler, 2004, and Schultz, 2004, present some of the main fi ndings). attendance (Gertler, 2004, and Schultz, 2004, present some of the main fi ndings). 
In the words of Paul Gertler, one of the original investigators (quoted in Ayres, In the words of Paul Gertler, one of the original investigators (quoted in Ayres, 
2007, p. 86), “Progresa is why now thirty countries worldwide have conditional cash 2007, p. 86), “Progresa is why now thirty countries worldwide have conditional cash 
transfer programs.” Progresa is emblematic of a wave of random assignment policy transfer programs.” Progresa is emblematic of a wave of random assignment policy 
evaluations sweeping development economics (Dufl o and Kremer, 2008, provide evaluations sweeping development economics (Dufl o and Kremer, 2008, provide 
an overview).an overview).

Closer to home, the Moving to Opportunity program, carried out by the U.S. Closer to home, the Moving to Opportunity program, carried out by the U.S. 
Department of Housing and Urban Development, randomly selected low-income Department of Housing and Urban Development, randomly selected low-income 
families in Baltimore, Boston, Chicago, Los Angeles, and New York City to be families in Baltimore, Boston, Chicago, Los Angeles, and New York City to be 
offered housing vouchers specifi cally limited to low-poverty areas (Kling, Liebman, offered housing vouchers specifi cally limited to low-poverty areas (Kling, Liebman, 
and Katz, 2007). The program has produced surprising and infl uential evidence and Katz, 2007). The program has produced surprising and infl uential evidence 
weighing against the view that neighborhood effects are a primary determinant of weighing against the view that neighborhood effects are a primary determinant of 
low earnings by the residents of poor neighborhoods.low earnings by the residents of poor neighborhoods.

Structural econometric parameters, such as the intertemporal substitution Structural econometric parameters, such as the intertemporal substitution 
elasticity (a labor supply elasticity that measures the response to transitory wage elasticity (a labor supply elasticity that measures the response to transitory wage 
changes), have also been the focus of randomized experiments. For example, changes), have also been the focus of randomized experiments. For example, 
Fehr and Goette (2007) randomized the pay of bicycle messengers, offering one Fehr and Goette (2007) randomized the pay of bicycle messengers, offering one 
group and then another a temporarily higher wage. This cleverly designed study group and then another a temporarily higher wage. This cleverly designed study 
shows how wages affect labor supply in an environment where lifetime wealth is shows how wages affect labor supply in an environment where lifetime wealth is 
unchanged. The result is dramatic and convincing: holding wealth constant, unchanged. The result is dramatic and convincing: holding wealth constant, 
workers shift hours into high-wage periods, with an implied intertemporal substitu-workers shift hours into high-wage periods, with an implied intertemporal substitu-
tion elasticity of about unity.tion elasticity of about unity.

Such studies offer a powerful method for deriving results that are defensible Such studies offer a powerful method for deriving results that are defensible 
both in the seminar room and in a legislative hearing. But experiments are time both in the seminar room and in a legislative hearing. But experiments are time 
consuming, expensive, and may not always be practical. It’s diffi cult to imagine a consuming, expensive, and may not always be practical. It’s diffi cult to imagine a 
randomized trial to evaluate the effect of immigrants on the economy of the host randomized trial to evaluate the effect of immigrants on the economy of the host 
country. However, human institutions or the forces of nature can step into the country. However, human institutions or the forces of nature can step into the 
breach with informative natural or quasi-experiments. For example, in an infl uen-breach with informative natural or quasi-experiments. For example, in an infl uen-
tial paper, Card (1990a) used the Mariel boatlift from Cuba to Florida, when Cuban tial paper, Card (1990a) used the Mariel boatlift from Cuba to Florida, when Cuban 
émigré’s increased Miami’s labor force by about 7 percent in a period of three émigré’s increased Miami’s labor force by about 7 percent in a period of three 
months, as a natural experiment to study immigration. More recently, paralleling months, as a natural experiment to study immigration. More recently, paralleling 
the Moving to Opportunity experimental research agenda, Jacob (2004) studied the Moving to Opportunity experimental research agenda, Jacob (2004) studied 
the causal effects of public housing on housing project residents by exploiting the the causal effects of public housing on housing project residents by exploiting the 
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fact that public housing demolition in Chicago was scheduled in a manner unre-fact that public housing demolition in Chicago was scheduled in a manner unre-
lated to the characteristics of the projects and their residents.lated to the characteristics of the projects and their residents.

Like the results from randomized trials, quasi-experimental fi ndings have Like the results from randomized trials, quasi-experimental fi ndings have 
fi ltered quickly into policy discussions and become part of a constructive give-and-fi ltered quickly into policy discussions and become part of a constructive give-and-
take between the real world and the ivory tower, at least when it comes to applied take between the real world and the ivory tower, at least when it comes to applied 
microeconomics. Progress has been slower in empirical macro, but a smattering microeconomics. Progress has been slower in empirical macro, but a smattering 
of design-based empirical work appears to be generating a limited though useful of design-based empirical work appears to be generating a limited though useful 
consensus on key concerns, such as the causal effect of monetary policy on infl a-consensus on key concerns, such as the causal effect of monetary policy on infl a-
tion and output. Encouragingly, the recent fi nancial crisis has spurred an effort tion and output. Encouragingly, the recent fi nancial crisis has spurred an effort 
to produce credible evidence on questions related to banking. Across most fi elds to produce credible evidence on questions related to banking. Across most fi elds 
(although industrial organization appears to be an exception, as we discuss later), (although industrial organization appears to be an exception, as we discuss later), 
applied economists are now less likely to pin a causal interpretation of the results applied economists are now less likely to pin a causal interpretation of the results 
on econometric methodology alone. Design-based studies are distinguished by on econometric methodology alone. Design-based studies are distinguished by 
their prima facie credibility and by the attention investigators devote to making their prima facie credibility and by the attention investigators devote to making 
both an institutional and a data-driven case for causality.both an institutional and a data-driven case for causality.

Accounting for the origins of the credibility revolution in empirical economics Accounting for the origins of the credibility revolution in empirical economics 
is like trying to chart the birth of rock and roll. Early infl uences are many, and is like trying to chart the birth of rock and roll. Early infl uences are many, and 
every fan has a story. But from the trenches of empirical labor economics, we see every fan has a story. But from the trenches of empirical labor economics, we see 
an important impetus for better designs and more randomized trials coming from an important impetus for better designs and more randomized trials coming from 
studies questioning the reliability of econometric evaluations of subsidized govern-studies questioning the reliability of econometric evaluations of subsidized govern-
ment training programs. A landmark here is Lalonde (1986), who compared the ment training programs. A landmark here is Lalonde (1986), who compared the 
results from an econometric evaluation of the National Supported Work demonstra-results from an econometric evaluation of the National Supported Work demonstra-
tion with those from a randomized trial. The econometric results typically differed tion with those from a randomized trial. The econometric results typically differed 
quite a bit from those using random assignment. Lalonde argued that there is little quite a bit from those using random assignment. Lalonde argued that there is little 
reason to believe that statistical comparisons of alternative models (specifi cation reason to believe that statistical comparisons of alternative models (specifi cation 
testing) would point a researcher in the right direction. Two observational studies testing) would point a researcher in the right direction. Two observational studies 
of training effects foreshadowed the Lalonde results: Ashenfelter (1978) and of training effects foreshadowed the Lalonde results: Ashenfelter (1978) and 
Ashenfelter and Card (1985), using longitudinal data to evaluate federal training Ashenfelter and Card (1985), using longitudinal data to evaluate federal training 
programs without the benefi t of a quasi-experimental research design, found it programs without the benefi t of a quasi-experimental research design, found it 
diffi cult to construct specifi cation-robust estimates. Ashenfelter (1987) concluded diffi cult to construct specifi cation-robust estimates. Ashenfelter (1987) concluded 
that randomized trials are the way to go.that randomized trials are the way to go.

Younger empiricists also began to turn increasingly to quasi-experimental Younger empiricists also began to turn increasingly to quasi-experimental 
designs, often exploiting variation across U.S. states to get at causal relationships designs, often exploiting variation across U.S. states to get at causal relationships 
in the fi elds of labor and public fi nance. An early example of work in this spirit in the fi elds of labor and public fi nance. An early example of work in this spirit 
is Solon (1985), who estimated the effects of unemployment insurance on the is Solon (1985), who estimated the effects of unemployment insurance on the 
duration of unemployment spells by comparing the change in job-fi nding rates in duration of unemployment spells by comparing the change in job-fi nding rates in 
states that had recently tightened eligibility criteria for unemployment insurance, states that had recently tightened eligibility criteria for unemployment insurance, 
to the change in rates in states that had not changed their rules. Gruber’s (1994) to the change in rates in states that had not changed their rules. Gruber’s (1994) 
infl uential study of the incidence of state-mandated maternity benefi ts applies a infl uential study of the incidence of state-mandated maternity benefi ts applies a 
similar idea to a public fi nance question. Angrist (1990) and Angrist and Krueger similar idea to a public fi nance question. Angrist (1990) and Angrist and Krueger 
(1991) illustrated the value of instrumental variables identifi cation strategies in (1991) illustrated the value of instrumental variables identifi cation strategies in 
studies of the effects of Vietnam-era military service and schooling on earnings. studies of the effects of Vietnam-era military service and schooling on earnings. 
Meyer’s (1995) methodological survey made many applied microeconomists aware Meyer’s (1995) methodological survey made many applied microeconomists aware 
of the quasi-experimental tradition embodied in venerable texts on social science of the quasi-experimental tradition embodied in venerable texts on social science 
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research methods by Campbell and Stanley (1963) and Cook and Campbell (1979). research methods by Campbell and Stanley (1963) and Cook and Campbell (1979). 
These texts, which emphasize research design and threats to validity, were well These texts, which emphasize research design and threats to validity, were well 
known in some disciplines, but distinctly outside the econometric canon.known in some disciplines, but distinctly outside the econometric canon.11

In this essay, we argue that a clear-eyed focus on research design is at the In this essay, we argue that a clear-eyed focus on research design is at the 
heart of the credibility revolution in empirical economics. We begin with an over-heart of the credibility revolution in empirical economics. We begin with an over-
view of Leamer’s (1983) critique and his suggested remedies, based on concrete view of Leamer’s (1983) critique and his suggested remedies, based on concrete 
examples of that time. We then turn to the key factors we see contributing to examples of that time. We then turn to the key factors we see contributing to 
improved empirical work, including the availability of more and better data, along improved empirical work, including the availability of more and better data, along 
with advances in theoretical econometric understanding, but especially the fact with advances in theoretical econometric understanding, but especially the fact 
that research design has moved front and center in much of empirical micro. We that research design has moved front and center in much of empirical micro. We 
offer a brief digression into macroeconomics and industrial organization, where offer a brief digression into macroeconomics and industrial organization, where 
progress—by our lights—is less dramatic, although there is work in both fi elds progress—by our lights—is less dramatic, although there is work in both fi elds 
that we fi nd encouraging. Finally, we discuss the view that the design pendulum that we fi nd encouraging. Finally, we discuss the view that the design pendulum 
has swung too far. Critics of design-driven studies argue that in pursuit of clean has swung too far. Critics of design-driven studies argue that in pursuit of clean 
and credible research designs, researchers seek good answers instead of good ques-and credible research designs, researchers seek good answers instead of good ques-
tions. We briefl y respond to this concern, which worries us little.tions. We briefl y respond to this concern, which worries us little.

The Leamer Critique and His Proposed RemediesThe Leamer Critique and His Proposed Remedies

Naive Regressions and Extreme Bounds AnalysisNaive Regressions and Extreme Bounds Analysis
Leamer (1983) presented randomized trials—a randomized evaluation of Leamer (1983) presented randomized trials—a randomized evaluation of 

fertilizer, to be specifi c—as an ideal research design. He also argued that random-fertilizer, to be specifi c—as an ideal research design. He also argued that random-
ized experiments differ only in degree from nonexperimental evaluations of causal ized experiments differ only in degree from nonexperimental evaluations of causal 
effects, the difference being the extent to which we can be confi dent that the causal effects, the difference being the extent to which we can be confi dent that the causal 
variable of interest is independent of confounding factors. We couldn’t agree more. variable of interest is independent of confounding factors. We couldn’t agree more. 
However, Leamer went on to suggest that the best way to use nonexperimental However, Leamer went on to suggest that the best way to use nonexperimental 
data to get closer to the experimental ideal is to explore the fragility of nonex-data to get closer to the experimental ideal is to explore the fragility of nonex-
perimental estimates. Leamer did not advocate perimental estimates. Leamer did not advocate doing randomized trials or, for that  randomized trials or, for that 
matter, looking for credible natural experiments.matter, looking for credible natural experiments.

The chief target of Leamer’s (1983) essay was naive regression analysis. In fact, The chief target of Leamer’s (1983) essay was naive regression analysis. In fact, 
none of the central fi gures in the Leamer-inspired debate had much to say about none of the central fi gures in the Leamer-inspired debate had much to say about 
research design. Rather, these authors (like McAleer, Pagan, and Volker, 1985, and research design. Rather, these authors (like McAleer, Pagan, and Volker, 1985, and 
Cooley and LeRoy, 1986, among others) appear to have accepted the boundaries of Cooley and LeRoy, 1986, among others) appear to have accepted the boundaries of 
established econometric practice, perhaps because they were primarily interested established econometric practice, perhaps because they were primarily interested 
in addressing traditional macroeconomic questions using time series data.in addressing traditional macroeconomic questions using time series data.

After making the tacit assumption that useful experiments are an unattainable After making the tacit assumption that useful experiments are an unattainable 
ideal, Leamer (1983, but see also 1978, 1985) proposed that the whimsical nature of ideal, Leamer (1983, but see also 1978, 1985) proposed that the whimsical nature of 
key assumptions in regression analysis be confronted head-on through a process of key assumptions in regression analysis be confronted head-on through a process of 

1 Many of the applied studies mentioned here have been the subjects of critical re-examinations. This 
back and forth has mostly been constructive. For example, in an infl uential paper that generated 
wide-ranging methodological work, Bound, Jaeger, and Baker (1995) argue that the use of many weak 
instrumental variables biases some of the estimates reported in Angrist and Krueger (1991). For a 
recent discussion of weak instruments problems, see our book Angrist and Pischke (2009).
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sensitivity analysis. Sims (1988) threw his weight behind this idea as well. The general sensitivity analysis. Sims (1988) threw his weight behind this idea as well. The general 
heading of sensitivity analysis features an explicitly Bayesian agenda. Recognizing heading of sensitivity analysis features an explicitly Bayesian agenda. Recognizing 
the severe demands of Bayesian orthodoxy, such as a formal specifi cation of priors the severe demands of Bayesian orthodoxy, such as a formal specifi cation of priors 
and their incorporation into an elaborate multivariate framework, Leamer also and their incorporation into an elaborate multivariate framework, Leamer also 
argued for a more argued for a more ad hoc but intuitive approach called “extreme bounds analysis.”  but intuitive approach called “extreme bounds analysis.” 
In a nutshell, extreme bounds analysis amounts to the estimation of regressions with In a nutshell, extreme bounds analysis amounts to the estimation of regressions with 
many different sets of covariates included as controls; practitioners of this approach many different sets of covariates included as controls; practitioners of this approach 
are meant to report a range of estimates for the target parameter.are meant to report a range of estimates for the target parameter.

The Deterrent Effect of Capital PunishmentThe Deterrent Effect of Capital Punishment
We sympathize with Leamer’s (1983) view that much of the applied econo-We sympathize with Leamer’s (1983) view that much of the applied econo-

metrics of the 1970s and early 1980s lacked credibility. To make his point, and metrics of the 1970s and early 1980s lacked credibility. To make his point, and 
to illustrate the value of extreme bounds analysis, Leamer picked an inquiry into to illustrate the value of extreme bounds analysis, Leamer picked an inquiry into 
whether capital punishment deters murder. This question had been analyzed in a whether capital punishment deters murder. This question had been analyzed in a 
series of infl uential papers by Isaac Ehrlich, one exploiting time series variation series of infl uential papers by Isaac Ehrlich, one exploiting time series variation 
(Ehrlich, 1975a) and one using cross sections of states (Ehrlich, 1977b). Ehrlich (Ehrlich, 1975a) and one using cross sections of states (Ehrlich, 1977b). Ehrlich 
concluded that the death penalty had a substantial deterrent effect. Leamer (1983) concluded that the death penalty had a substantial deterrent effect. Leamer (1983) 
did not try to replicate Ehrlich’s work, but reported on an independent time-series did not try to replicate Ehrlich’s work, but reported on an independent time-series 
investigation of the deterrence hypothesis using extreme bounds analysis, force-investigation of the deterrence hypothesis using extreme bounds analysis, force-
fully arguing that the evidence for deterrence is fragile at best (although Ehrlich fully arguing that the evidence for deterrence is fragile at best (although Ehrlich 
and Liu, 1999, disputed this).and Liu, 1999, disputed this).

It’s hard to exaggerate the attention this topic commanded at the time. The It’s hard to exaggerate the attention this topic commanded at the time. The 
U.S. Supreme Court decision in U.S. Supreme Court decision in Furman v. Georgia (408 U.S. 153 [1972]) had  (408 U.S. 153 [1972]) had 
created a de facto moratorium on the death penalty. This moratorium lasted until created a de facto moratorium on the death penalty. This moratorium lasted until 
Gregg v. Georgia (428 U.S. 153 [1976]), at which time the high court decided that  (428 U.S. 153 [1976]), at which time the high court decided that 
the death penalty might be allowable if capital trials were bifurcated into separate the death penalty might be allowable if capital trials were bifurcated into separate 
guilt–innocence and sentencing phases. Gary Gilmore was executed not long after, guilt–innocence and sentencing phases. Gary Gilmore was executed not long after, 
in January 1977. Part of the intellectual case for restoration of capital punishment in January 1977. Part of the intellectual case for restoration of capital punishment 
was the deterrent effect (against a backdrop of high and increasing homicide rates was the deterrent effect (against a backdrop of high and increasing homicide rates 
at that time). Indeed, the U.S. Supreme Court cited Ehrlich’s (1975a) paper in its at that time). Indeed, the U.S. Supreme Court cited Ehrlich’s (1975a) paper in its 
Gregg v. Georgia decision reinstating capital punishment. decision reinstating capital punishment.

Ehrlich’s work was harshly criticized by a number of contemporaries in addi-Ehrlich’s work was harshly criticized by a number of contemporaries in addi-
tion to Leamer, most immediately Bowers and Pierce (1975) and Passell and Taylor tion to Leamer, most immediately Bowers and Pierce (1975) and Passell and Taylor 
(1977). Ehrlich’s results appeared to be sensitive to changes in functional form, (1977). Ehrlich’s results appeared to be sensitive to changes in functional form, 
inclusion of additional controls, and especially to changes in sample. Specifi cally, inclusion of additional controls, and especially to changes in sample. Specifi cally, 
his fi nding of a signifi cant deterrent effect seemed to depend on observations from his fi nding of a signifi cant deterrent effect seemed to depend on observations from 
the 1960s. The critics argued that the increase in murder rates in the 1960s may the 1960s. The critics argued that the increase in murder rates in the 1960s may 
have been driven by factors other than the sharp decline in the number of execu-have been driven by factors other than the sharp decline in the number of execu-
tions during this period. Ehrlich (1975b, 1977a) disputed the critics’ claims about tions during this period. Ehrlich (1975b, 1977a) disputed the critics’ claims about 
functional form and argued that the 1960s provided useful variation in executions functional form and argued that the 1960s provided useful variation in executions 
that should be retained.that should be retained.

Ehrlich’s contemporaneous critics failed to hit on what we think of as the most Ehrlich’s contemporaneous critics failed to hit on what we think of as the most 
obvious fl aw in Ehrlich’s analysis. Like other researchers studying deterrent effects, obvious fl aw in Ehrlich’s analysis. Like other researchers studying deterrent effects, 
Ehrlich recognized that the level of the murder rate might affect the number of Ehrlich recognized that the level of the murder rate might affect the number of 
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executions as well as vice versa and that his results might be biased by omitted vari-executions as well as vice versa and that his results might be biased by omitted vari-
ables (especially variables with a strong trend). Ehrlich sought to address problems ables (especially variables with a strong trend). Ehrlich sought to address problems 
of reverse causality and omitted variables bias by using instrumental variables in a of reverse causality and omitted variables bias by using instrumental variables in a 
two-stage least squares procedure. He treated the probabilities of arrest, conviction, two-stage least squares procedure. He treated the probabilities of arrest, conviction, 
and execution as endogenous in a simultaneous-equations set-up. His instrumental and execution as endogenous in a simultaneous-equations set-up. His instrumental 
variables were lagged expenditures on policing, total government expenditure, variables were lagged expenditures on policing, total government expenditure, 
population, and the fraction of the population nonwhite. But Ehrlich did not population, and the fraction of the population nonwhite. But Ehrlich did not 
explain why these are good instruments, or even how and why these variables are explain why these are good instruments, or even how and why these variables are 
correlated with the right-hand-side endogenous variables.correlated with the right-hand-side endogenous variables.22

Ehrlich’s work on capital punishment seems typical of applied work in the Ehrlich’s work on capital punishment seems typical of applied work in the 
period about which Leamer (1983) was writing. Most studies of this time used fairly period about which Leamer (1983) was writing. Most studies of this time used fairly 
short time series samples with strong trends common to both dependent and inde-short time series samples with strong trends common to both dependent and inde-
pendent variables. The use of panel data to control for year and fi xed effects—even pendent variables. The use of panel data to control for year and fi xed effects—even 
panels of U.S. states—was still rare. The use of instrumental variables to uncover panels of U.S. states—was still rare. The use of instrumental variables to uncover 
causal relationships was typically mechanical, with little discussion of why the causal relationships was typically mechanical, with little discussion of why the 
instruments affected the endogenous variables of interest or why they constitute instruments affected the endogenous variables of interest or why they constitute 
a “good experiment.” In fact, Ehrlich was ahead of many of his contemporaries in a “good experiment.” In fact, Ehrlich was ahead of many of his contemporaries in 
that he recognized the need for something other than naive regression analysis. In that he recognized the need for something other than naive regression analysis. In 
our view, the main problem with Ehrlich’s work was the lack of a credible research our view, the main problem with Ehrlich’s work was the lack of a credible research 
design. Specifi cally, he failed to isolate a source of variation in execution rates that design. Specifi cally, he failed to isolate a source of variation in execution rates that 
is likely to reveal causal effects on homicide rates.is likely to reveal causal effects on homicide rates.

The Education Production FunctionThe Education Production Function
Other examples of poor research design from this time period come from the Other examples of poor research design from this time period come from the 

literature on education production. This literature (surveyed in Hanushek, 1986) literature on education production. This literature (surveyed in Hanushek, 1986) 
is concerned with the causal effect of school inputs, such as class size or per-pupil is concerned with the causal effect of school inputs, such as class size or per-pupil 
expenditure, on student achievement. The systematic quantitative study of school expenditure, on student achievement. The systematic quantitative study of school 
inputs was born with the report by Coleman et al. (1966), which (among other inputs was born with the report by Coleman et al. (1966), which (among other 
things) used regression techniques to look at the proportion of variation in student things) used regression techniques to look at the proportion of variation in student 
outputs that can be accounted for in an outputs that can be accounted for in an R 22 sense by variation in school inputs.  sense by variation in school inputs. 
Surprisingly to many at the time, the Coleman report found only a weak association Surprisingly to many at the time, the Coleman report found only a weak association 
between school inputs and achievement. Many subsequent regression-based studies between school inputs and achievement. Many subsequent regression-based studies 
replicated this fi nding. replicated this fi nding. 

The Coleman Report was one of the fi rst investigations of education produc-The Coleman Report was one of the fi rst investigations of education produc-
tion in a large representative sample. It is also distinguished by sensitivity analysis, tion in a large representative sample. It is also distinguished by sensitivity analysis, 
in that it discusses results from many specifi cations (with and without controls in that it discusses results from many specifi cations (with and without controls 
for family background, for example). The problem with the Coleman report for family background, for example). The problem with the Coleman report 
and many of the studies in this mold that followed is that they failed to separate and many of the studies in this mold that followed is that they failed to separate 
variation in inputs from confounding variation in student, school, or community variation in inputs from confounding variation in student, school, or community 
characteristics. For example, a common fi nding in the literature on education characteristics. For example, a common fi nding in the literature on education 

2 Ehrlich’s (1977b) follow-up cross-state analysis did not use two-stage least squares. In later work, 
Ehrlich (1987, 1996) discussed his choice of instruments and the associated identifi cation problems 
at greater length.
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production is that children in smaller classes tend to do worse on standardized production is that children in smaller classes tend to do worse on standardized 
tests, even after controlling for demographic variables. This apparently perverse tests, even after controlling for demographic variables. This apparently perverse 
fi nding seems likely to be at least partly due to the fact that struggling children fi nding seems likely to be at least partly due to the fact that struggling children 
are often grouped into smaller classes. Likewise, the relationship between school are often grouped into smaller classes. Likewise, the relationship between school 
spending and achievement is confounded by the fact that spending is often highest spending and achievement is confounded by the fact that spending is often highest 
in a mixture of wealthy districts and large urban districts with struggling minority in a mixture of wealthy districts and large urban districts with struggling minority 
students. In short, these regressions suffer from problems of reverse causality and students. In short, these regressions suffer from problems of reverse causality and 
omitted variables bias.omitted variables bias.

Many education production studies from this period also ignored the fact Many education production studies from this period also ignored the fact 
that inputs like class size and per-pupil expenditure are inherently linked. Because that inputs like class size and per-pupil expenditure are inherently linked. Because 
smaller classes cannot be had without spending more on teachers, it makes little smaller classes cannot be had without spending more on teachers, it makes little 
sense to treat total expenditure (including teacher salaries) as a control variable sense to treat total expenditure (including teacher salaries) as a control variable 
when estimating the causal effect of class size (a point noted by Krueger, 2003). when estimating the causal effect of class size (a point noted by Krueger, 2003). 
Finally, the fact that early authors in the education production literature explored Finally, the fact that early authors in the education production literature explored 
many alternative models was not necessarily a plus. In what was arguably one of many alternative models was not necessarily a plus. In what was arguably one of 
the better studies of the period, Summers and Wolfe (1977) report only the fi nal the better studies of the period, Summers and Wolfe (1977) report only the fi nal 
results of an exhaustive specifi cation search in their evaluation of the effect of results of an exhaustive specifi cation search in their evaluation of the effect of 
school resources on achievement. To their credit, Summers and Wolfe describe the school resources on achievement. To their credit, Summers and Wolfe describe the 
algorithm that produced the results they chose to report, and forthrightly caution algorithm that produced the results they chose to report, and forthrightly caution 
(p. 642) that “the data have been mined, of course.” As we see it, however, the main (p. 642) that “the data have been mined, of course.” As we see it, however, the main 
problem with this literature is not data mining, but rather the weak foundation for problem with this literature is not data mining, but rather the weak foundation for 
a causal interpretation of whatever specifi cation authors might have favored.a causal interpretation of whatever specifi cation authors might have favored.

Other Empirical Work in the Age of Heavy MetalOther Empirical Work in the Age of Heavy Metal
The 1970s and early 1980s saw rapid growth in mainframe computer size and The 1970s and early 1980s saw rapid growth in mainframe computer size and 

power. Stata had yet to appear, but magnetic tape jockeys managed to crunch power. Stata had yet to appear, but magnetic tape jockeys managed to crunch 
more and more numbers in increasingly elaborate ways. For the most part, more and more numbers in increasingly elaborate ways. For the most part, 
however, increased computing power did not produce more credible estimates. however, increased computing power did not produce more credible estimates. 
For example, the use of randomized trials and quasi-experiments to study educa-For example, the use of randomized trials and quasi-experiments to study educa-
tion production was rare until fairly recently (a history traced in Angrist, 2004). tion production was rare until fairly recently (a history traced in Angrist, 2004). 
Other areas of social science saw isolated though ambitious efforts to get at key Other areas of social science saw isolated though ambitious efforts to get at key 
economic relationships using random assignment. A bright spot was the RAND economic relationships using random assignment. A bright spot was the RAND 
Health Insurance Experiment, initiated in 1974 (Manning, Newhouse, Duan, Health Insurance Experiment, initiated in 1974 (Manning, Newhouse, Duan, 
Keeler, and Leibowitz, 1987). This experiment looked at the effects of deduct-Keeler, and Leibowitz, 1987). This experiment looked at the effects of deduct-
ibles and copayments on health care usage and outcomes. Unfortunately, many ibles and copayments on health care usage and outcomes. Unfortunately, many 
of the most ambitious (and expensive) social experiments were seriously fl awed: of the most ambitious (and expensive) social experiments were seriously fl awed: 
the Seattle/Denver and Gary Income Maintenance Experiments, in which the the Seattle/Denver and Gary Income Maintenance Experiments, in which the 
government compared income-support plans modeled on Milton Friedman’s idea government compared income-support plans modeled on Milton Friedman’s idea 
of a negative income tax, were compromised by sample attrition and systematic of a negative income tax, were compromised by sample attrition and systematic 
income misreporting (Ashenfelter and Plant, 1990; Greenberg and Halsey, 1983). income misreporting (Ashenfelter and Plant, 1990; Greenberg and Halsey, 1983). 
This fact supports Leamer’s (1983) contention that the difference between a This fact supports Leamer’s (1983) contention that the difference between a 
randomized trial and an observational study is one of degree. Indeed, we would randomized trial and an observational study is one of degree. Indeed, we would 
be the fi rst to admit that a well-done observational study can be more credible be the fi rst to admit that a well-done observational study can be more credible 
and persuasive than a poorly executed randomized trial.and persuasive than a poorly executed randomized trial.
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There was also much to complain about in empirical macroeconomics. An There was also much to complain about in empirical macroeconomics. An 
especially articulate complaint came from Sims (1980), who pointed out that especially articulate complaint came from Sims (1980), who pointed out that 
macroeconomic models of that time, typically a system of simultaneous equations, macroeconomic models of that time, typically a system of simultaneous equations, 
invoked identifi cation assumptions (the division of variables into those that are invoked identifi cation assumptions (the division of variables into those that are 
jointly determined and exogenous) that were hard to swallow and poorly defended. jointly determined and exogenous) that were hard to swallow and poorly defended. 
As an alternative to the simultaneous equations framework, Sims suggested the As an alternative to the simultaneous equations framework, Sims suggested the 
use of unrestricted vector autoregressions (VARs) to describe the relation between use of unrestricted vector autoregressions (VARs) to describe the relation between 
a given set of endogenous variables and their lags. But Sims’s complaint did not a given set of endogenous variables and their lags. But Sims’s complaint did not 
generate the same kind of response that grew out of concerns about econometric generate the same kind of response that grew out of concerns about econometric 
program evaluation in the 1980s among labor economists. Macroeconomists program evaluation in the 1980s among labor economists. Macroeconomists 
circled their wagons but did not mobilize an identifi cation posse.circled their wagons but did not mobilize an identifi cation posse.

Sims’s argument came on the heels of a closely related and similarly infl uential Sims’s argument came on the heels of a closely related and similarly infl uential 
stab at the heart of empirical macro known as the Lucas critique. Lucas (1976) and stab at the heart of empirical macro known as the Lucas critique. Lucas (1976) and 
Kydland and Prescott (1977) argued via theoretical examples that in a world with Kydland and Prescott (1977) argued via theoretical examples that in a world with 
forward-looking optimizing agents, forward-looking optimizing agents, nothing can be learned from past policy changes.  can be learned from past policy changes. 
Lucas held out the hope that we might instead try to recover the empirical response Lucas held out the hope that we might instead try to recover the empirical response 
to changes in policy rules by estimating the structural parameters that lie at the root to changes in policy rules by estimating the structural parameters that lie at the root 
of economic behavior, such as those related to technology or preferences (Lucas saw of economic behavior, such as those related to technology or preferences (Lucas saw 
these parameters as stable or at least policy invariant). But Kydland and Prescott—these parameters as stable or at least policy invariant). But Kydland and Prescott—
invoking Lucas—appeared willing to give up entirely on conventional empirical work invoking Lucas—appeared willing to give up entirely on conventional empirical work 
(1977, p. 487): “If we are not to attempt to select policy optimally, how should it be (1977, p. 487): “If we are not to attempt to select policy optimally, how should it be 
selected? Our answer is, as Lucas (1976) proposed, that economic theory be used to selected? Our answer is, as Lucas (1976) proposed, that economic theory be used to 
evaluate alternative policy rules and that one with good operating characteristics be evaluate alternative policy rules and that one with good operating characteristics be 
selected.” This view helped to lay the intellectual foundations for a sharp turn toward selected.” This view helped to lay the intellectual foundations for a sharp turn toward 
theory in macro, though often informed by numbers via “calibration.”theory in macro, though often informed by numbers via “calibration.”

Our overview of empirical work in the Leamer era focuses on shortcomings. Our overview of empirical work in the Leamer era focuses on shortcomings. 
But we should also note that the best applied work from the 1970s and early 1980s But we should also note that the best applied work from the 1970s and early 1980s 
still holds up today. A well-cited example is Feldstein and Horioka (1980), which still holds up today. A well-cited example is Feldstein and Horioka (1980), which 
argues that the strong link between domestic savings and investment weighs against argues that the strong link between domestic savings and investment weighs against 
the notion of substantial international capital mobility. The Feldstein and Horioka the notion of substantial international capital mobility. The Feldstein and Horioka 
study presents simple evidence in favor of a link between domestic savings and study presents simple evidence in favor of a link between domestic savings and 
investment, discusses important sources of omitted variables bias and simultaneity investment, discusses important sources of omitted variables bias and simultaneity 
bias in these estimates, and tries to address these concerns. Obstfeld’s (1995) bias in these estimates, and tries to address these concerns. Obstfeld’s (1995) 
extensive investigation of the Feldstein and Horioka (1980) framework essentially extensive investigation of the Feldstein and Horioka (1980) framework essentially 
replicates their fi ndings for a later and longer period.replicates their fi ndings for a later and longer period.

Why There’s Less Con in Econometrics TodayWhy There’s Less Con in Econometrics Today

Improvements in empirical work have come from many directions. Better data Improvements in empirical work have come from many directions. Better data 
and more robust estimation methods are part of the story, as is a reduced emphasis and more robust estimation methods are part of the story, as is a reduced emphasis 
on econometric considerations that are not central to a causal interpretation of the on econometric considerations that are not central to a causal interpretation of the 
main fi ndings. But the primary force driving the credibility revolution has been a main fi ndings. But the primary force driving the credibility revolution has been a 
vigorous push for better and more clearly articulated research designs.vigorous push for better and more clearly articulated research designs.
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Better and More DataBetter and More Data
Not unusually for the period, Ehrlich (1975a) analyzed a time series of 35 annual Not unusually for the period, Ehrlich (1975a) analyzed a time series of 35 annual 

observations. In contrast, Donohue and Wolfers (2005) investigate the capital punish-observations. In contrast, Donohue and Wolfers (2005) investigate the capital punish-
ment question using a panel of U.S. states from 1934 to 2000, with many more years ment question using a panel of U.S. states from 1934 to 2000, with many more years 
and richer within-state variation due to the panel structure of the data. Better data and richer within-state variation due to the panel structure of the data. Better data 
often engenders a fresh approach to long-standing research questions. Grogger’s often engenders a fresh approach to long-standing research questions. Grogger’s 
(1990) investigation of the deterrent effect of executions on daily homicide rates, (1990) investigation of the deterrent effect of executions on daily homicide rates, 
inspired by sociologist Phillips (1980), is an example.inspired by sociologist Phillips (1980), is an example.33 Farther afi eld, improvements  Farther afi eld, improvements 
have come from a rapidly expanding reservoir of micro data in many countries. The have come from a rapidly expanding reservoir of micro data in many countries. The 
use of administrative records has also grown.use of administrative records has also grown.

Fewer DistractionsFewer Distractions
Bower’s and Pierce (1975) devoted considerable attention to Ehrlich’s (1975a) Bower’s and Pierce (1975) devoted considerable attention to Ehrlich’s (1975a) 

use of the log transformation, as well as to his choice of sample period. Passell and use of the log transformation, as well as to his choice of sample period. Passell and 
Taylor (1977) noted the potential for omitted variables bias, but worried as much Taylor (1977) noted the potential for omitted variables bias, but worried as much 
about about F -tests for temporal homogeneity and logs. The methodological appendix -tests for temporal homogeneity and logs. The methodological appendix 
to Ehrlich’s (1977b) follow-up paper discusses the possibility of using a Box–Cox to Ehrlich’s (1977b) follow-up paper discusses the possibility of using a Box–Cox 
transformation to implement a fl exible functional form, tests for heteroskedasticity, transformation to implement a fl exible functional form, tests for heteroskedasticity, 
and uses generalized least squares. Ehrlich’s (1975b) reply to Bowers and Pierce and uses generalized least squares. Ehrlich’s (1975b) reply to Bowers and Pierce 
focused on the statistical signifi cance of trend terms in samples of different focused on the statistical signifi cance of trend terms in samples of different 
lengths, differences in computational procedures related to serial correlation, and lengths, differences in computational procedures related to serial correlation, and 
evidence for robustness to the use of logs. Ehrlich’s (1977a) reply to Passell covers evidence for robustness to the use of logs. Ehrlich’s (1977a) reply to Passell covers 
the sample period and logs, though he also reports some of his (1977b) cross-state the sample period and logs, though he also reports some of his (1977b) cross-state 
estimates. Ehrlich’s rejoinders devoted little attention to the core issue of whether estimates. Ehrlich’s rejoinders devoted little attention to the core issue of whether 
the sources of variation in execution used by his statistical models justify a causal the sources of variation in execution used by his statistical models justify a causal 
interpretation of his estimates, but Ehrlich’s contemporaneous critics did not hit interpretation of his estimates, but Ehrlich’s contemporaneous critics did not hit 
this nail on the head either. Even were the results insensitive to the sample, the this nail on the head either. Even were the results insensitive to the sample, the 
same in logs and levels, and the residuals independent and identically distributed, same in logs and levels, and the residuals independent and identically distributed, 
we would remain unsatisfi ed. In the give and take that followed Ehrlich’s original we would remain unsatisfi ed. In the give and take that followed Ehrlich’s original 
paper, the question of instrument validity rarely surfaced, while the question of paper, the question of instrument validity rarely surfaced, while the question of 
omitted variables bias took a back seat to concerns about sample break points and omitted variables bias took a back seat to concerns about sample break points and 
functional form.functional form.44

As in the exchange over capital punishment, others writing at about the same As in the exchange over capital punishment, others writing at about the same 
time often seemed distracted by concerns related to functional form and general-time often seemed distracted by concerns related to functional form and general-
ized least squares. Today’s applied economists have the benefi t of a less dogmatic ized least squares. Today’s applied economists have the benefi t of a less dogmatic 
understanding of regression analysis. Specifi cally, an emerging grasp of the sense understanding of regression analysis. Specifi cally, an emerging grasp of the sense 
in which regression and two-stage least squares produce average effects even in which regression and two-stage least squares produce average effects even 
when the underlying relationship is heterogeneous and/or nonlinear has made when the underlying relationship is heterogeneous and/or nonlinear has made 

3 The decline in the use of time series and the increase in the use of panel data and researcher-origi-
nated data are documented for the fi eld of labor economics in Table 1 of Angrist and Krueger (1999).
4 Hoenack and Weiler’s (1980) critical re-examination of Ehrlich (1975a) centered on identifi ca-
tion problems, but the alternative exclusion restrictions Hoenack and Weiler proposed were offered 
without much justifi cation and seem just as hard to swallow as Ehrlich’s (for example, the proportion 
nonwhite is used as an instrument).
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functional form concerns less central. The linear models that constitute the work-functional form concerns less central. The linear models that constitute the work-
horse of contemporary empirical practice usually turn out to be remarkably robust, horse of contemporary empirical practice usually turn out to be remarkably robust, 
a feature many applied researchers have long sensed and that econometric theory a feature many applied researchers have long sensed and that econometric theory 
now does a better job of explaining.now does a better job of explaining.55 Robust standard errors, automated clustering,  Robust standard errors, automated clustering, 
and larger samples have also taken the steam out of issues like heteroskedasticity and larger samples have also taken the steam out of issues like heteroskedasticity 
and serial correlation. A legacy of White’s (1980a) paper on robust standard errors, and serial correlation. A legacy of White’s (1980a) paper on robust standard errors, 
one of the most highly cited from the period, is the near death of generalized one of the most highly cited from the period, is the near death of generalized 
least squares in cross-sectional applied work. In the interests of replicability, and least squares in cross-sectional applied work. In the interests of replicability, and 
to reduce the scope for errors, modern applied researchers often prefer simpler to reduce the scope for errors, modern applied researchers often prefer simpler 
estimators though they might be giving up asymptotic effi ciency.estimators though they might be giving up asymptotic effi ciency.

Better Research DesignBetter Research Design
Leamer (1983) led his essay with the idea that experiments—specifi cally, Leamer (1983) led his essay with the idea that experiments—specifi cally, 

randomized trials—provide a benchmark for applied econometrics. He was not randomized trials—provide a benchmark for applied econometrics. He was not 
alone among econometric thought leaders of the period in this view. Here is Zvi alone among econometric thought leaders of the period in this view. Here is Zvi 
Griliches (1986, p. 1466) at the beginning of a chapter on data in Griliches (1986, p. 1466) at the beginning of a chapter on data in The Handbook of 
Econometrics: “If the data were perfect, collected from well-designed randomized : “If the data were perfect, collected from well-designed randomized 
experiments, there would hardly be room for a separate fi eld of econometrics.” experiments, there would hardly be room for a separate fi eld of econometrics.” 
Since then, empirical researchers in economics have increasingly looked to the Since then, empirical researchers in economics have increasingly looked to the 
ideal of a randomized experiment to justify causal inference. In applied micro ideal of a randomized experiment to justify causal inference. In applied micro 
fi elds such as development, education, environmental economics, health, labor, fi elds such as development, education, environmental economics, health, labor, 
and public fi nance, researchers seek real experiments where feasible, and useful and public fi nance, researchers seek real experiments where feasible, and useful 
natural experiments if real experiments seem (at least for a time) infeasible. In natural experiments if real experiments seem (at least for a time) infeasible. In 
either case, a hallmark of contemporary applied microeconometrics is a concep-either case, a hallmark of contemporary applied microeconometrics is a concep-
tual framework that highlights specifi c sources of variation. These studies can be tual framework that highlights specifi c sources of variation. These studies can be 
said to be said to be design based in that they give the research design underlying any sort of  in that they give the research design underlying any sort of 
study the attention it would command in a real experiment.study the attention it would command in a real experiment.

The econometric methods that feature most prominently in quasi-experi-The econometric methods that feature most prominently in quasi-experi-
mental studies are instrumental variables, regression discontinuity methods, and mental studies are instrumental variables, regression discontinuity methods, and 
differences-in-differences-style policy analysis. These econometric methods are not differences-in-differences-style policy analysis. These econometric methods are not 
new, but their use has grown and become more self-conscious and sophisticated new, but their use has grown and become more self-conscious and sophisticated 
since the 1970s. When using instrumental variables, for example, it’s no longer since the 1970s. When using instrumental variables, for example, it’s no longer 
enough to mechanically invoke a simultaneous equations framework, labeling enough to mechanically invoke a simultaneous equations framework, labeling 
some variables endogenous and others exogenous, without substantially justifying some variables endogenous and others exogenous, without substantially justifying 
the exclusion restrictions and as-good-as-randomly-assigned assumptions that the exclusion restrictions and as-good-as-randomly-assigned assumptions that 
make instruments valid. The best of today’s design-based studies make a strong make instruments valid. The best of today’s design-based studies make a strong 
institutional case, backed up with empirical evidence, for the variation thought to institutional case, backed up with empirical evidence, for the variation thought to 
generate a useful natural experiment.generate a useful natural experiment.

5 For this view of regression, see, for example, White (1980b), Chamberlain’s (1984) chapter in the Hand-
book of Econometrics, Goldberger’s (1991) econometrics text, or our book Angrist and Pischke (2009) for 
a recent take. Angrist and Imbens (1995) show how conventional two-stage least squares estimates can 
be interpreted as an average causal effect in models with nonlinear and heterogeneous causal effects.
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The Card and Krueger (1992a, b) school quality studies illustrate this and The Card and Krueger (1992a, b) school quality studies illustrate this and 
arguably mark a turning point in the literature on education production. The arguably mark a turning point in the literature on education production. The 
most important problem in studies of school quality is omitted variables bias. On most important problem in studies of school quality is omitted variables bias. On 
one hand, students who attend better-resourced schools often end up in those one hand, students who attend better-resourced schools often end up in those 
schools by virtue of their ability or family background, while on the other, weaker schools by virtue of their ability or family background, while on the other, weaker 
students may receive disproportionately more inputs (say, smaller classes). Card students may receive disproportionately more inputs (say, smaller classes). Card 
and Krueger addressed this problem by focusing on variation in resources at the and Krueger addressed this problem by focusing on variation in resources at the 
state-of-birth-by-cohort level, which they link to the economic returns to education state-of-birth-by-cohort level, which they link to the economic returns to education 
estimated at the same level. For example, they used Census data to compare theestimated at the same level. For example, they used Census data to compare the  
returns to education for residents of Northern states educated in the North with returns to education for residents of Northern states educated in the North with 
the returns to education for residents of Northern states educated in more poorly the returns to education for residents of Northern states educated in more poorly 
resourced Southern schoolsresourced Southern schools..

The Card and Krueger papers show that the economic returns to schooling The Card and Krueger papers show that the economic returns to schooling 
are higher for those from states and cohorts with more resources (controlling are higher for those from states and cohorts with more resources (controlling 
for cohort and state fi xed effects and for state of residence). They implicitly use for cohort and state fi xed effects and for state of residence). They implicitly use 
state-level variation in education spending as a natural experiment: aggrega-state-level variation in education spending as a natural experiment: aggrega-
tion of individual data up to the cohort/state level is an instrumental variables tion of individual data up to the cohort/state level is an instrumental variables 
procedure where the instruments are state-of-birth and cohort dummy variables. procedure where the instruments are state-of-birth and cohort dummy variables. 
(In Angrist and Pischke, 2009, we show why aggregation in this way works as an (In Angrist and Pischke, 2009, we show why aggregation in this way works as an 
instrumental variable.) State-by-cohort variation in the returns to schooling is instrumental variable.) State-by-cohort variation in the returns to schooling is 
unlikely to be driven by selection or sorting, because individuals do not control unlikely to be driven by selection or sorting, because individuals do not control 
these variables. State-by-cohort variation in school resources also appears unre-these variables. State-by-cohort variation in school resources also appears unre-
lated to omitted factors such as family background. Finally, Card and Krueger lated to omitted factors such as family background. Finally, Card and Krueger 
took advantage of the fact that school resources increased dramatically in the took advantage of the fact that school resources increased dramatically in the 
South when the Southerners in their sample were school age. The Card and South when the Southerners in their sample were school age. The Card and 
Krueger school quality studies are not bulletproof (Heckman, Layne-Farrar, and Krueger school quality studies are not bulletproof (Heckman, Layne-Farrar, and 
Todd, 1996 offer a critique), but their fi ndings on class size (the strongest set of Todd, 1996 offer a critique), but their fi ndings on class size (the strongest set of 
results in Card and Krueger, 1992a) have been replicated in other studies with results in Card and Krueger, 1992a) have been replicated in other studies with 
good research designs.good research designs.

Angrist and Lavy (1999) illustrate the regression discontinuity research design Angrist and Lavy (1999) illustrate the regression discontinuity research design 
in a study of the effects of class size on achievement. The regression discontinuity in a study of the effects of class size on achievement. The regression discontinuity 
approach can be used when people are divided into groups based on a certain approach can be used when people are divided into groups based on a certain 
cutoff score, with those just above or just below the cutoff suddenly becoming cutoff score, with those just above or just below the cutoff suddenly becoming 
eligible for a different treatment. The Angrist–Lavy research design is driven by the eligible for a different treatment. The Angrist–Lavy research design is driven by the 
fact that class size in Israel is capped at 40, so a cohort of 41 is usually split into two fact that class size in Israel is capped at 40, so a cohort of 41 is usually split into two 
small classes, while a cohort of 39 is typically left in a single large class. This leads small classes, while a cohort of 39 is typically left in a single large class. This leads 
to a series of notional experiments: comparisons of schools with enrollments just to a series of notional experiments: comparisons of schools with enrollments just 
above and below 40, 80, or 120, in which class sizes vary considerably. In this setting, above and below 40, 80, or 120, in which class sizes vary considerably. In this setting, 
schools with different numbers of students may be quite similar in other character-schools with different numbers of students may be quite similar in other character-
istics. Thus, as school enrollment increases, a regression capturing the relationship istics. Thus, as school enrollment increases, a regression capturing the relationship 
between number of students and academic achievement should show discontinui-between number of students and academic achievement should show discontinui-
ties at these break points. The Angrist–Lavy design is a version of what is known as ties at these break points. The Angrist–Lavy design is a version of what is known as 
the “fuzzy” regression discontinuity design, in which the fuzziness comes from the the “fuzzy” regression discontinuity design, in which the fuzziness comes from the 
fact that class size is not a deterministic function of the kinks or discontinuities in fact that class size is not a deterministic function of the kinks or discontinuities in 
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the enrollment function. Regression discontinuity estimates using Israeli data show the enrollment function. Regression discontinuity estimates using Israeli data show 
a marked increase in achievement when class size falls.a marked increase in achievement when class size falls.66

The key assumption that drives regression discontinuity estimation of causal The key assumption that drives regression discontinuity estimation of causal 
effects is that individuals are otherwise similar on either side of the discontinuity effects is that individuals are otherwise similar on either side of the discontinuity 
(or that any differences can be controlled using smooth functions of the enroll-(or that any differences can be controlled using smooth functions of the enroll-
ment rates, also known as the “running variable,” that determine the kink points). ment rates, also known as the “running variable,” that determine the kink points). 
In the Angrist–Lavy study, for example, we would like students to have similar In the Angrist–Lavy study, for example, we would like students to have similar 
family backgrounds when they attend schools with grade enrollments of 35–39 and family backgrounds when they attend schools with grade enrollments of 35–39 and 
41–45. One test of this assumption, illustrated by Angrist and Lavy (and Hoxby, 41–45. One test of this assumption, illustrated by Angrist and Lavy (and Hoxby, 
2000) is to estimate effects in an increasingly narrow range around the kink points; 2000) is to estimate effects in an increasingly narrow range around the kink points; 
as the interval shrinks, the jump in class size stays the same or perhaps even grows, as the interval shrinks, the jump in class size stays the same or perhaps even grows, 
but the estimates should be subject to less and less omitted variables bias. Another but the estimates should be subject to less and less omitted variables bias. Another 
test, proposed by McCrary (2008), looks for bunching in the distribution of student test, proposed by McCrary (2008), looks for bunching in the distribution of student 
background characteristics around the kink. This bunching might signal strategic background characteristics around the kink. This bunching might signal strategic 
behavior—an effort by some families, presumably not a random sample, to sort behavior—an effort by some families, presumably not a random sample, to sort 
themselves into schools with smaller classes. Finally, we can simply look for differ-themselves into schools with smaller classes. Finally, we can simply look for differ-
ences in mean pre-treatment characteristics around the kink.ences in mean pre-treatment characteristics around the kink.

In a recent paper, Urqiola and Verhoogen (2009) exploit enrollment cutoffs In a recent paper, Urqiola and Verhoogen (2009) exploit enrollment cutoffs 
like those used by Angrist and Lavy in a sample from Chile. The Chilean data like those used by Angrist and Lavy in a sample from Chile. The Chilean data 
exhibit an enticing fi rst stage, with sharp drops (discontinuities) in class size at exhibit an enticing fi rst stage, with sharp drops (discontinuities) in class size at 
the cutoffs (multiples of 45). But household characteristics also differ consider-the cutoffs (multiples of 45). But household characteristics also differ consider-
ably across these same kinks, probably because the Chilean school system, which is ably across these same kinks, probably because the Chilean school system, which is 
mostly privatized, offers both opportunities and incentives for wealthier students mostly privatized, offers both opportunities and incentives for wealthier students 
to attend schools just beyond the cutoffs. The possibility of such a pattern is an to attend schools just beyond the cutoffs. The possibility of such a pattern is an 
important caution for users of regression discontinuity methods, though Urqiola important caution for users of regression discontinuity methods, though Urqiola 
and Verhoogen note that the enrollment manipulation they uncover for Chile is far and Verhoogen note that the enrollment manipulation they uncover for Chile is far 
from ubiquitous and does not arise in the Angrist–Lavy study. A large measure of from ubiquitous and does not arise in the Angrist–Lavy study. A large measure of 
the attraction of the regression discontinuity design is its experimental spirit and the attraction of the regression discontinuity design is its experimental spirit and 
the ease with which claims for validity of the design can be verifi ed.the ease with which claims for validity of the design can be verifi ed.

The last arrow in the quasi-experimental quiver is differences-in-differences, The last arrow in the quasi-experimental quiver is differences-in-differences, 
probably the most widely applicable design-based estimator. Differences-in-differ-probably the most widely applicable design-based estimator. Differences-in-differ-
ences policy analysis typically compares the evolution of outcomes in groups affected ences policy analysis typically compares the evolution of outcomes in groups affected 
more and less by a policy change. The most compelling differences-in-differences-more and less by a policy change. The most compelling differences-in-differences-
type studies report outcomes for treatment and control observations for a period type studies report outcomes for treatment and control observations for a period 
long enough to show the underlying trends, with attention focused on how devia-long enough to show the underlying trends, with attention focused on how devia-
tions from trend relate to changes in policy. Figure 1, from Donohue and Wolfers tions from trend relate to changes in policy. Figure 1, from Donohue and Wolfers 
(2005), illustrates this approach for the death penalty question. This fi gure plots (2005), illustrates this approach for the death penalty question. This fi gure plots 
homicide rates in Canada and the United States for over half a century, indicating homicide rates in Canada and the United States for over half a century, indicating 

6 Fuzzy regression discontinuity designs are most easily analyzed using instrumental variables. In the 
language of instrumental variables, the relationship between achievement and kinks in the enrollment 
function is the reduced form, while the change in class size at the kinks is the fi rst stage. The ratio 
of reduced form to fi rst-stage effects is an instrumental variable estimate of the causal effect of class 
size on test scores. Imbens and Lemieux (2008) offer a practitioners’ guide to the use of regression 
discontinuity designs in economics.
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periods when the death penalty was in effect in the two countries. The point of the periods when the death penalty was in effect in the two countries. The point of the 
fi gure is not to focus on Canada’s consistently lower homicide rate, but instead to fi gure is not to focus on Canada’s consistently lower homicide rate, but instead to 
show that Canadian and U.S. homicide rates move roughly in parallel, suggesting show that Canadian and U.S. homicide rates move roughly in parallel, suggesting 
that America’s sharp changes in death penalty policy were of little consequence for that America’s sharp changes in death penalty policy were of little consequence for 
murder. The fi gure also suggests that the deterrent effect would have to be large to murder. The fi gure also suggests that the deterrent effect would have to be large to 
be visible against the background noise of yearly fl uctuations in homicide rates.be visible against the background noise of yearly fl uctuations in homicide rates.

Paralleling the growth in quasi-experimental experiment designs, the number Paralleling the growth in quasi-experimental experiment designs, the number 
and scope of real experiments has increased dramatically, with a concomitant and scope of real experiments has increased dramatically, with a concomitant 
increase in the quality of experimental design, data collection, and statistical increase in the quality of experimental design, data collection, and statistical 
analysis. While 1970s-era randomized studies of the negative income tax were analysis. While 1970s-era randomized studies of the negative income tax were 
compromised by misreporting and differential attrition in treatment and control compromised by misreporting and differential attrition in treatment and control 
groups, researchers today give these concerns more attention and manage them groups, researchers today give these concerns more attention and manage them 
more effectively. Such problems are often solved by a substantial reliance on more effectively. Such problems are often solved by a substantial reliance on 
administrative data, and a more sophisticated interpretation of survey data when administrative data, and a more sophisticated interpretation of survey data when 
administrative records are unavailable.administrative records are unavailable.

A landmark randomized trial related to education production is the Tennessee A landmark randomized trial related to education production is the Tennessee 
STAR experiment. In this intervention, more than 10,000 students were randomly STAR experiment. In this intervention, more than 10,000 students were randomly 
assigned to classes of different sizes from kindergarten through third grade. Like assigned to classes of different sizes from kindergarten through third grade. Like 
the negative income tax experiments, the STAR experiment had its fl aws. Not all the negative income tax experiments, the STAR experiment had its fl aws. Not all 
subjects contributed follow-up data and some self-selected into smaller classes after subjects contributed follow-up data and some self-selected into smaller classes after 
random assignment. A careful analysis by Krueger (1999), however, shows clear random assignment. A careful analysis by Krueger (1999), however, shows clear 

Figure 1
Homicide Rates and the Death Penalty in the United States and Canada
(U.S. and Canada rates on the left and right y-axes, respectively)
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evidence of achievement gains in smaller classes, even after taking attrition and evidence of achievement gains in smaller classes, even after taking attrition and 
self-selection into account.self-selection into account.77

Economists are increasingly running their own experiments as well as Economists are increasingly running their own experiments as well as 
processing the data from experiments run by others. A recent randomized trial processing the data from experiments run by others. A recent randomized trial 
of a microfi nance scheme, an important policy tool for economic development, is of a microfi nance scheme, an important policy tool for economic development, is 
an ambitious illustration (Banerjee, Dufl o, Glennerster, and Kinnan, 2009). This an ambitious illustration (Banerjee, Dufl o, Glennerster, and Kinnan, 2009). This 
study evaluates the impact of offering small loans to independent business owners study evaluates the impact of offering small loans to independent business owners 
living in slums in India. The Banerjee et al. study randomizes the availability of living in slums in India. The Banerjee et al. study randomizes the availability of 
microcredit across over 100 Indian neighborhoods, debunking the claim that real-microcredit across over 100 Indian neighborhoods, debunking the claim that real-
istic and relevant policy interventions cannot be studied with random assignment.istic and relevant policy interventions cannot be studied with random assignment.

With the growing focus on research design, it’s no longer enough to adopt With the growing focus on research design, it’s no longer enough to adopt 
the language of an orthodox simultaneous equations framework, labeling some the language of an orthodox simultaneous equations framework, labeling some 
variables endogenous and others exogenous, without offering strong institutional variables endogenous and others exogenous, without offering strong institutional 
or empirical support for these identifying assumptions. The new emphasis on a or empirical support for these identifying assumptions. The new emphasis on a 
credibly exogenous source of variation has also fi ltered down to garden-variety credibly exogenous source of variation has also fi ltered down to garden-variety 
regression estimates, in which researchers are increasingly likely to focus on sources regression estimates, in which researchers are increasingly likely to focus on sources 
of omitted variables bias, rather than a quixotic effort to uncover the “true model” of omitted variables bias, rather than a quixotic effort to uncover the “true model” 
generating the data.generating the data.88

More Transparent Discussion of Research DesignMore Transparent Discussion of Research Design
Over 65 years ago, Haavelmo submitted the following complaint to the readers Over 65 years ago, Haavelmo submitted the following complaint to the readers 

of of Econometrica (1944, p. 14): “A design of experiments (a prescription of what the  (1944, p. 14): “A design of experiments (a prescription of what the 
physicists call a ‘crucial experiment’) is an essential appendix to any quantitative physicists call a ‘crucial experiment’) is an essential appendix to any quantitative 
theory. And we usually have some such experiment in mind when we construct the theory. And we usually have some such experiment in mind when we construct the 
theories, although—unfortunately—most economists do not describe their design theories, although—unfortunately—most economists do not describe their design 
of experiments explicitly.”of experiments explicitly.”

In recent years, the notion that one’s identifi cation strategy—in other words, In recent years, the notion that one’s identifi cation strategy—in other words, 
research design—must be described and defended has fi ltered deeply into empir-research design—must be described and defended has fi ltered deeply into empir-
ical practice. The query “What’s your identifi cation strategy?” and others like it are ical practice. The query “What’s your identifi cation strategy?” and others like it are 
now heard routinely at empirical workshops and seminars. Evidence for this claim now heard routinely at empirical workshops and seminars. Evidence for this claim 
comes from the fact that a full text search for the terms “empirical strategy,” “iden-comes from the fact that a full text search for the terms “empirical strategy,” “iden-
tifi cation strategy,” “research design,” or “control group” gets only 19 hits in Econlit tifi cation strategy,” “research design,” or “control group” gets only 19 hits in Econlit 
from 1970–1989, while producing 742 hits from 1990–2009. We acknowledge that from 1970–1989, while producing 742 hits from 1990–2009. We acknowledge that 
just because the author uses the term “research design” does not mean that he just because the author uses the term “research design” does not mean that he 
or she has a good one! Moreover, some older studies incorporate quality designs or she has a good one! Moreover, some older studies incorporate quality designs 

7 A related development at the forefront of education research is the use of choice lotteries as a 
research tool. In many settings where an educational option is over-subscribed, allocation among 
applicants is by lottery. The result is a type of institutional random assignment, which can then be 
used to study school vouchers, charter schools, and magnet schools (for example, Rouse, 1998, who 
looks at vouchers).
8 The focus on omitted variables bias is refl ected in a burgeoning literature using matching and the 
propensity score as an alternative (or complement) to regression. In the absence of random assign-
ment, such strategies seek to eliminate observable differences between treatment and control groups, 
with little or no attention devoted to modeling the process determining outcomes. See Imbens and 
Wooldridge (2009) for an introduction.



Joshua D. Angrist and Jörn-Steffen Pischke     17

without using today’s language. Still, the shift in emphasis is dramatic and refl ects without using today’s language. Still, the shift in emphasis is dramatic and refl ects 
a trend that’s more than semantic.a trend that’s more than semantic.

Good designs have a benefi cial side effect: they typically lend themselves to Good designs have a benefi cial side effect: they typically lend themselves to 
a simple explanation of empirical methods and a straightforward presentation of a simple explanation of empirical methods and a straightforward presentation of 
results. The key fi ndings from a randomized experiment are typically differences results. The key fi ndings from a randomized experiment are typically differences 
in means between treatment and controls, reported before treatment (to show in means between treatment and controls, reported before treatment (to show 
balance) and after treatment (to estimate causal effects). Nonexperimental results balance) and after treatment (to estimate causal effects). Nonexperimental results 
can often be presented in a manner that mimics this, highlighting specifi c contrasts. can often be presented in a manner that mimics this, highlighting specifi c contrasts. 
The Donohue and Wolfers (2005) differences-in-differences study mentioned The Donohue and Wolfers (2005) differences-in-differences study mentioned 
above illustrates this by focusing on changes in American law as a source of quasi-above illustrates this by focusing on changes in American law as a source of quasi-
experimental variation and documenting the parallel evolution of outcomes in experimental variation and documenting the parallel evolution of outcomes in 
treatment and control groups in a comparison of the United States and Canada.treatment and control groups in a comparison of the United States and Canada.

Whither Sensitivity Analysis?Whither Sensitivity Analysis?
Responding to what he saw as the fragility of naive regression analysis, Leamer Responding to what he saw as the fragility of naive regression analysis, Leamer 

(1983) proposed extreme bounds analysis, which focuses on the distribution of (1983) proposed extreme bounds analysis, which focuses on the distribution of 
results generated by a variety of specifi cations. An extreme version of extreme results generated by a variety of specifi cations. An extreme version of extreme 
bounds analysis appears in Sala-i-Martin’s (1997) paper reporting two million bounds analysis appears in Sala-i-Martin’s (1997) paper reporting two million 
regressions related to economic growth. Specifi cally, in a variation on a procedure regressions related to economic growth. Specifi cally, in a variation on a procedure 
fi rst proposed in this context by Levine and Renelt (1992), Sala-i-Martin computes fi rst proposed in this context by Levine and Renelt (1992), Sala-i-Martin computes 
two million of the many possible growth regressions that can be constructed two million of the many possible growth regressions that can be constructed 
from 62 explanatory variables. He retains a fi xed set of three controls (GDP, life from 62 explanatory variables. He retains a fi xed set of three controls (GDP, life 
expectancy, and the primary school enrollment rate in 1960), leaving 59 possible expectancy, and the primary school enrollment rate in 1960), leaving 59 possible 
“regressors of interest.” From these 59, sets of three additional controls are chosen “regressors of interest.” From these 59, sets of three additional controls are chosen 
from 58 while the 59from 58 while the 59thth is taken to be the one of interest. This process is repeated  is taken to be the one of interest. This process is repeated 
until every one of the 59 possible regressors of interest has played this role in until every one of the 59 possible regressors of interest has played this role in 
equations with all possible sets of three controls, generating 30,857 regressions equations with all possible sets of three controls, generating 30,857 regressions 
per regressor of interest. The object of this exercise is to see which variables are per regressor of interest. The object of this exercise is to see which variables are 
robustly signifi cant across specifi cations.robustly signifi cant across specifi cations.

Sala-i-Martin’s (1997) investigation of extreme bounds analysis must have been Sala-i-Martin’s (1997) investigation of extreme bounds analysis must have been 
fun. Happily, however, this kind of agnostic specifi cation search has not emerged as fun. Happily, however, this kind of agnostic specifi cation search has not emerged as 
a central feature of contemporary empirical work. Although Sala-i-Martin succeeds a central feature of contemporary empirical work. Although Sala-i-Martin succeeds 
in uncovering some robustly signifi cant relations (the “fraction of the population in uncovering some robustly signifi cant relations (the “fraction of the population 
Confucian” is a wonderfully robust predictor of economic growth), we don’t see Confucian” is a wonderfully robust predictor of economic growth), we don’t see 
why this result should be taken more seriously than the naive capital punishment why this result should be taken more seriously than the naive capital punishment 
specifi cations criticized by Leamer. Are these the right controls? Are six controls specifi cations criticized by Leamer. Are these the right controls? Are six controls 
enough? How are we to understand sources of variation in one variable when the enough? How are we to understand sources of variation in one variable when the 
effects of three others, arbitrarily chosen, are partialed out? Wide-net searches of effects of three others, arbitrarily chosen, are partialed out? Wide-net searches of 
this kind offer little basis for a causal interpretation.this kind offer little basis for a causal interpretation.

Design-based studies typically lead to a focused and much narrower specifi ca-Design-based studies typically lead to a focused and much narrower specifi ca-
tion analysis, targeted at tion analysis, targeted at specifi c threats to validity. For example, when considering  threats to validity. For example, when considering 
results from a randomized trial, we focus on the details of treatment assignment results from a randomized trial, we focus on the details of treatment assignment 
and the evidence for treatment-control balance in pre-treatment variables. When and the evidence for treatment-control balance in pre-treatment variables. When 
using instrumental variables, we look at whether the instrument might have causal using instrumental variables, we look at whether the instrument might have causal 
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effects on the outcome in ways other than through the channel of interest (in simul-effects on the outcome in ways other than through the channel of interest (in simul-
taneous equations lingo, this is an examination of the exclusion restriction). With taneous equations lingo, this is an examination of the exclusion restriction). With 
differences-in-differences, we look for group-specifi c trends, since such trends can differences-in-differences, we look for group-specifi c trends, since such trends can 
invalidate a comparison of changes across groups. In a regression discontinuity invalidate a comparison of changes across groups. In a regression discontinuity 
design, we look at factors like bunching at the cutoff point, which might suggest design, we look at factors like bunching at the cutoff point, which might suggest 
that the cutoff directly infl uenced behavior. Since the nature of the experiment is that the cutoff directly infl uenced behavior. Since the nature of the experiment is 
clear in these designs, the tack we should take when assessing validity is also clear. clear in these designs, the tack we should take when assessing validity is also clear. 

Mad About MacroMad About Macro

In an essay read to graduating University of Chicago economics students in In an essay read to graduating University of Chicago economics students in 
1988, Robert Lucas (1988) described what, as he sees it, economists do. Lucas used 1988, Robert Lucas (1988) described what, as he sees it, economists do. Lucas used 
the specifi c question of the connection between monetary policy and economic the specifi c question of the connection between monetary policy and economic 
depression to frame his discussion, which is very much in the experimentalist spirit: depression to frame his discussion, which is very much in the experimentalist spirit: 
“One way to demonstrate that I understand this connection—I think the only really “One way to demonstrate that I understand this connection—I think the only really 
convincing way—would be for me to engineer a depression in the United States by convincing way—would be for me to engineer a depression in the United States by 
manipulating the US money supply.”manipulating the US money supply.”

Ruling out such a national manipulation as immoral, Lucas (1988) describes Ruling out such a national manipulation as immoral, Lucas (1988) describes 
how to create a depression by changing the money supply at Kennywood Park, how to create a depression by changing the money supply at Kennywood Park, 
an amusement park near Pittsburgh that is distinguished by stunning river views, an amusement park near Pittsburgh that is distinguished by stunning river views, 
wooden roller coasters, and the fact that it issues its own currency. Lucas’s story is wooden roller coasters, and the fact that it issues its own currency. Lucas’s story is 
evocative and compelling (the Kennywood allegory is a version of Lucas, 1973). We’re evocative and compelling (the Kennywood allegory is a version of Lucas, 1973). We’re 
happy to see a macroeconomist of Lucas’s stature use an experimental benchmark happy to see a macroeconomist of Lucas’s stature use an experimental benchmark 
to defi ne causality and show a willingness to entertain quasi-experimental evidence to defi ne causality and show a willingness to entertain quasi-experimental evidence 
on the effects of a change in the money supply. Yet this story makes us wonder why on the effects of a change in the money supply. Yet this story makes us wonder why 
the real world of empirical macro rarely features design-based research.the real world of empirical macro rarely features design-based research.

Many macroeconomists have abandoned traditional empirical work entirely, Many macroeconomists have abandoned traditional empirical work entirely, 
focusing instead on “computational experiments,” as described in this journal by focusing instead on “computational experiments,” as described in this journal by 
Kydland and Prescott (1996). In a computational experiment, researchers choose Kydland and Prescott (1996). In a computational experiment, researchers choose 
a question, build a (theoretical) model economy, “calibrate” the model so that its a question, build a (theoretical) model economy, “calibrate” the model so that its 
behavior mimics the real economy along some key statistical dimensions, and then behavior mimics the real economy along some key statistical dimensions, and then 
run a computational experiment by changing model parameters (for example, run a computational experiment by changing model parameters (for example, 
tax rates or the money supply rule) to address the original question. The last two tax rates or the money supply rule) to address the original question. The last two 
decades have seen countless studies in this mold, often in a dynamic stochastic decades have seen countless studies in this mold, often in a dynamic stochastic 
general equilibrium framework. Whatever might be said in defense of this frame-general equilibrium framework. Whatever might be said in defense of this frame-
work as a tool for clarifying the implications of economic models, it produces no work as a tool for clarifying the implications of economic models, it produces no 
direct evidence on the magnitude or existence of causal effects. An effort to put direct evidence on the magnitude or existence of causal effects. An effort to put 
reasonable numbers on theoretical relations is harmless and may even be helpful. reasonable numbers on theoretical relations is harmless and may even be helpful. 
But it’s still theory.But it’s still theory.

Some rays of sunlight poke through the grey clouds of dynamic stochastic Some rays of sunlight poke through the grey clouds of dynamic stochastic 
general equilibrium. One strand of empirical macro has turned away from general equilibrium. One strand of empirical macro has turned away from 
modeling outcome variables such as GDP growth, focusing instead on the isolation modeling outcome variables such as GDP growth, focusing instead on the isolation 
of useful variation in U.S. monetary and fi scal policy. A leading contribution here of useful variation in U.S. monetary and fi scal policy. A leading contribution here 



The Credibility Revolution in Empirical Economics     19

is Romer and Romer (1989), who, in the spirit of Friedman and Schwartz (1963), is Romer and Romer (1989), who, in the spirit of Friedman and Schwartz (1963), 
review the minutes of Federal Reserve meetings and try to isolate events that look review the minutes of Federal Reserve meetings and try to isolate events that look 
like good monetary policy “experiments.” Their results suggest that monetary like good monetary policy “experiments.” Their results suggest that monetary 
contractions have signifi cant and long-lasting effects on the real economy. Later, in contractions have signifi cant and long-lasting effects on the real economy. Later, in 
Romer and Romer (2004), they produced similar fi ndings for the effects of policy Romer and Romer (2004), they produced similar fi ndings for the effects of policy 
shocks conditional on the Fed’s own forecasts.shocks conditional on the Fed’s own forecasts.99

The Romers’ work is design based in spirit and, for the most part, in detail. The Romers’ work is design based in spirit and, for the most part, in detail. 
Although a vast literature models Federal Reserve decision making, until recently, Although a vast literature models Federal Reserve decision making, until recently, 
surprisingly few studies have made an institutional case for policy experiments as surprisingly few studies have made an institutional case for policy experiments as 
the Romers’ study does. Two recent monetary policy studies in the Romer spirit, the Romers’ study does. Two recent monetary policy studies in the Romer spirit, 
and perhaps even closer to the sort of quasi-experimental work we read and do, are and perhaps even closer to the sort of quasi-experimental work we read and do, are 
Richardson and Troost (2009), who exploit regional differences in Fed behavior Richardson and Troost (2009), who exploit regional differences in Fed behavior 
during the Depression to study liquidity effects, and Velde (2009), who describes the during the Depression to study liquidity effects, and Velde (2009), who describes the 
results of an extreme monetary experiment much like the one Lucas envisioned (albeit results of an extreme monetary experiment much like the one Lucas envisioned (albeit 
in eighteenth-century France). Romer and Romer (2007) use methods similar to those in eighteenth-century France). Romer and Romer (2007) use methods similar to those 
they used for money to study fi scal policy, as do Ramey and Shapiro (1998) and Barro they used for money to study fi scal policy, as do Ramey and Shapiro (1998) and Barro 
and Redlick (2009), who investigate the effects of large fi scal shocks due to wars.and Redlick (2009), who investigate the effects of large fi scal shocks due to wars.

The literature on empirical growth has long suffered from a lack of imagi-The literature on empirical growth has long suffered from a lack of imagi-
nation in research design, but here too the picture has recently improved. The nation in research design, but here too the picture has recently improved. The 
most infl uential design-based study in this area has probably been Acemoglu, most infl uential design-based study in this area has probably been Acemoglu, 
Johnson, and Robinson (2001), who argue that good political institutions are a key Johnson, and Robinson (2001), who argue that good political institutions are a key 
ingredient in the recipe for growth, an idea growth economists have entertained ingredient in the recipe for growth, an idea growth economists have entertained 
for many decades. The diffi culty here is that better institutions might be a luxury for many decades. The diffi culty here is that better institutions might be a luxury 
that richer countries can enjoy more easily, leading to a vexing reverse causality that richer countries can enjoy more easily, leading to a vexing reverse causality 
problem. Acemoglu, Johnson, and Robinson (2001) try to overcome this problem problem. Acemoglu, Johnson, and Robinson (2001) try to overcome this problem 
by using the differential mortality rates of European settlers in different colonies by using the differential mortality rates of European settlers in different colonies 
as an instrument for political institutions in the modern successor countries. Their as an instrument for political institutions in the modern successor countries. Their 
argument goes: where Europeans faced high mortality rates, they couldn’t settle, argument goes: where Europeans faced high mortality rates, they couldn’t settle, 
and where Europeans couldn’t settle, colonial regimes were more extractive, with and where Europeans couldn’t settle, colonial regimes were more extractive, with 
little emphasis on property rights and democratic institutions. Where European little emphasis on property rights and democratic institutions. Where European 
immigrants could settle, they frequently tried to emulate the institutional set-up immigrants could settle, they frequently tried to emulate the institutional set-up 
of their home countries, with stronger property rights and more democratic of their home countries, with stronger property rights and more democratic 
institutions. This approach leads to an instrumental variables strategy where the institutions. This approach leads to an instrumental variables strategy where the 
instrument for the effect of institutions on growth is settler mortality.instrument for the effect of institutions on growth is settler mortality.1010

Acemoglu, Johnson, and Robinson (2001) are in the vanguard of promising Acemoglu, Johnson, and Robinson (2001) are in the vanguard of promising 
research on the sources of economic growth using a similar style. Examples include research on the sources of economic growth using a similar style. Examples include 
Bleakley (2007), who looks at the effect of hookworm eradication on income in Bleakley (2007), who looks at the effect of hookworm eradication on income in 
the American South; and Rodrik and Wacziarg (2005) and Persson and Tabellini the American South; and Rodrik and Wacziarg (2005) and Persson and Tabellini 

9 Angrist and Kuersteiner (2007) implement a version of the Romer and Romer (2004) research design 
using the propensity score and an identifi cation argument cast in the language of potential outcomes 
commonly used in microeconometric program evaluation.
10 Albouy (2008) raises concerns about the settler mortality data that Acemoglu, Johnson, and 
Robinson (2001) used to construct instruments. See Acemoglu, Johnson, and Robinson (2006) for a 
response to earlier versions of Albouy’s critique.
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(2008), who investigate interactions between democracy and growth using differ-(2008), who investigate interactions between democracy and growth using differ-
ences-in-differences type designs.ences-in-differences type designs.

With these examples accumulating, macroeconomics seems primed for a wave With these examples accumulating, macroeconomics seems primed for a wave 
of empirical work using better designs. Ricardo Reis, a recently tenured macro-of empirical work using better designs. Ricardo Reis, a recently tenured macro-
economist at Columbia University, observed in the wake of the 2008 fi nancial crisis: economist at Columbia University, observed in the wake of the 2008 fi nancial crisis: 
“Macroeconomics has taken a turn towards theory in the last 10–15 years. Most “Macroeconomics has taken a turn towards theory in the last 10–15 years. Most 
young macroeconomists are more comfortable with proving theorems than with young macroeconomists are more comfortable with proving theorems than with 
getting their hands on any data or speculating on current events.”getting their hands on any data or speculating on current events.”1111 The charge  The charge 
that today’s macro agenda is empirically impoverished comes also from older that today’s macro agenda is empirically impoverished comes also from older 
macro warhorses like Mankiw (2006) and Solow (2008). But the recent economic macro warhorses like Mankiw (2006) and Solow (2008). But the recent economic 
crisis, fundamentally a macroeconomic and policy-related affair, has spawned crisis, fundamentally a macroeconomic and policy-related affair, has spawned 
intriguing design-based studies of the crisis’s origins in the mortgage market (Keys, intriguing design-based studies of the crisis’s origins in the mortgage market (Keys, 
Mukherjee, Seru, and Vig, 2010; Bubb and Kaufman, 2009). The theory-centric Mukherjee, Seru, and Vig, 2010; Bubb and Kaufman, 2009). The theory-centric 
macro fortress appears increasingly hard to defend.macro fortress appears increasingly hard to defend.

Industrial DisorganizationIndustrial Disorganization

An important question at the center of the applied industrial organization An important question at the center of the applied industrial organization 
agenda is the effect of corporate mergers on prices. One might think, therefore, agenda is the effect of corporate mergers on prices. One might think, therefore, 
that studies of the causal effects of mergers on prices would form the core of a that studies of the causal effects of mergers on prices would form the core of a 
vast micro-empirical literature, the way hundreds of studies in labor economics vast micro-empirical literature, the way hundreds of studies in labor economics 
have looked at union relative wage effects. We might also have expected a large have looked at union relative wage effects. We might also have expected a large 
parallel literature evaluating merger policy, in the way that labor economists have parallel literature evaluating merger policy, in the way that labor economists have 
looked at the effect of policies like right-to-work laws. But it isn’t so. In a recent looked at the effect of policies like right-to-work laws. But it isn’t so. In a recent 
review, Ashenfelter, Hosken, and Weinberg (2009) found only about 20 empirical review, Ashenfelter, Hosken, and Weinberg (2009) found only about 20 empirical 
studies evaluating the price effects of consummated mergers directly; for example, studies evaluating the price effects of consummated mergers directly; for example, 
Borenstein (1990) compares prices on airline routes out of hubs affected to Borenstein (1990) compares prices on airline routes out of hubs affected to 
differing degrees by mergers. Research on the aggregate effects of merger policy differing degrees by mergers. Research on the aggregate effects of merger policy 
seems to be even more limited; see the articles by Baker (2003) and Crandall and seems to be even more limited; see the articles by Baker (2003) and Crandall and 
Winston (2003) in this journal for a review and confl icting interpretations.Winston (2003) in this journal for a review and confl icting interpretations.

The dominant paradigm for merger analysis in modern academic studies, The dominant paradigm for merger analysis in modern academic studies, 
sometimes called the “new empirical industrial organization,” is an elaborate sometimes called the “new empirical industrial organization,” is an elaborate 
exercise consisting of three steps: The fi rst estimates a demand system for the exercise consisting of three steps: The fi rst estimates a demand system for the 
product in question, often using the discrete choice/differentiated products product in question, often using the discrete choice/differentiated products 
framework developed by Berry, Levinsohn, and Pakes (1995). Demand elastici-framework developed by Berry, Levinsohn, and Pakes (1995). Demand elastici-
ties are typically identifi ed using instrumental variables for prices; often, the ties are typically identifi ed using instrumental variables for prices; often, the 
instruments are prices in other markets (as in Hausman, 1996). Next, researchers instruments are prices in other markets (as in Hausman, 1996). Next, researchers 
postulate a model of market conduct, say, Bertrand–Nash price-based compe-postulate a model of market conduct, say, Bertrand–Nash price-based compe-
tition between different brands or products. In the context of this model, the tition between different brands or products. In the context of this model, the 
fi rms’ efforts to maximize profi ts lead to a set of relationships between prices fi rms’ efforts to maximize profi ts lead to a set of relationships between prices 

11 As quoted by Justin Wolfers (2008) in his New York Times column “Freakonomics” (⟨http://
freakonomics.blogs.nytimes.com/2008/03/31/more-on-the-missing-macroeconomists/〉). 
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and marginal costs for each product, with the link provided by the substitution and marginal costs for each product, with the link provided by the substitution 
matrix estimated in the initial step. Finally, industry behavior is simulated with matrix estimated in the initial step. Finally, industry behavior is simulated with 
and without the merger of interest. and without the merger of interest. 

Nevo (2000) uses this approach to estimate the effect of mergers on the Nevo (2000) uses this approach to estimate the effect of mergers on the 
price of ready-to-eat breakfast cereals in a well-cited paper. Nevo’s study is distin-price of ready-to-eat breakfast cereals in a well-cited paper. Nevo’s study is distin-
guished by careful empirical work, attention to detail, and a clear discussion of guished by careful empirical work, attention to detail, and a clear discussion of 
the superstructure of assumptions upon which it rests. At the same time, this the superstructure of assumptions upon which it rests. At the same time, this 
elaborate superstructure should be of concern. The postulated demand system elaborate superstructure should be of concern. The postulated demand system 
implicitly imposes restrictions on substitution patterns and other aspects of implicitly imposes restrictions on substitution patterns and other aspects of 
consumer behavior about which we have little reason to feel strongly. The validity consumer behavior about which we have little reason to feel strongly. The validity 
of the instrumental variables used to identify demand equations—prices in other of the instrumental variables used to identify demand equations—prices in other 
markets—turns on independence assumptions across markets that seem arbitrary. markets—turns on independence assumptions across markets that seem arbitrary. 
The simulation step typically focuses on a single channel by which mergers affect The simulation step typically focuses on a single channel by which mergers affect 
prices—the reduction in the number of competitors—when at least in theory a prices—the reduction in the number of competitors—when at least in theory a 
merger can lead to other effects like cost reductions that make competition tougher merger can lead to other effects like cost reductions that make competition tougher 
between remaining producers. In this framework, it’s hard to see precisely which between remaining producers. In this framework, it’s hard to see precisely which 
features of the data drive the ultimate results.features of the data drive the ultimate results.

Can mergers be analyzed using simple, transparent empirical methods that Can mergers be analyzed using simple, transparent empirical methods that 
trace a shorter route from facts to fi ndings? The challenge for a direct causal anal-trace a shorter route from facts to fi ndings? The challenge for a direct causal anal-
ysis of mergers is to use data to describe a counterfactual world in which the merger ysis of mergers is to use data to describe a counterfactual world in which the merger 
didn’t occur. Hastings (2004) does this in a study of the retail gasoline market. She didn’t occur. Hastings (2004) does this in a study of the retail gasoline market. She 
analyzes the takeover of independent Thrifty stations by large vertically integrated analyzes the takeover of independent Thrifty stations by large vertically integrated 
station owner ARCO in California, with an eye to estimating the effects of this station owner ARCO in California, with an eye to estimating the effects of this 
merger on prices at Thrifty’s competitors. Hastings’ research design specifi es a merger on prices at Thrifty’s competitors. Hastings’ research design specifi es a 
local market for each station: treatment stations are near a Thrifty station, control local market for each station: treatment stations are near a Thrifty station, control 
stations are not. She then compares prices around the time of the merger using a stations are not. She then compares prices around the time of the merger using a 
straightforward differences-in-differences framework.straightforward differences-in-differences framework.

A drawback of the Hastings (2004) analysis is that it captures the effects of A drawback of the Hastings (2004) analysis is that it captures the effects of 
a merger on Thrifty’s competitors, but not on the former Thrifty stations. Still, it a merger on Thrifty’s competitors, but not on the former Thrifty stations. Still, it 
seems likely that anticompetitive effects would turn up at any station operating in seems likely that anticompetitive effects would turn up at any station operating in 
affected markets. We therefore see the Hastings approach as a fruitful change in affected markets. We therefore see the Hastings approach as a fruitful change in 
direction. Her estimates have clear implications for the phenomenon of interest, direction. Her estimates have clear implications for the phenomenon of interest, 
while their validity turns transparently on the quality of the control group, an while their validity turns transparently on the quality of the control group, an 
issue that can be assessed using pre-merger observations to compare price trends. issue that can be assessed using pre-merger observations to compare price trends. 
Hastings’s paper illustrates the power of this approach by showing almost perfectly Hastings’s paper illustrates the power of this approach by showing almost perfectly 
parallel price trends for treatment and control stations in two markets (Los Angeles parallel price trends for treatment and control stations in two markets (Los Angeles 
and San Diego) in pre-treatment months, followed by a sharp uptick in Thrifty and San Diego) in pre-treatment months, followed by a sharp uptick in Thrifty 
competitor pricing after the merger.competitor pricing after the merger.1212

12 As with most empirical work, Hastings’s (2004) analysis has its problems and her conclusions may 
warrant qualifi cation. Taylor, Kreisle, and Zimmerman (2007) fail to replicate Hastings’s fi ndings 
using an alternative data source. Here as elsewhere, however, a transparent approach facilitates repli-
cation efforts and constructive criticism.
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For policy purposes, of course, regulators must evaluate mergers before they For policy purposes, of course, regulators must evaluate mergers before they 
have occurred; design-based studies necessarily capture the effects of mergers after have occurred; design-based studies necessarily capture the effects of mergers after 
the fact. Many new empirical industrial organization studies forecast counterfactual the fact. Many new empirical industrial organization studies forecast counterfactual 
outcomes based on models and simulations, without a clear foundation in experi-outcomes based on models and simulations, without a clear foundation in experi-
ence. But should antitrust regulators favor the complex, simulation-based estimates ence. But should antitrust regulators favor the complex, simulation-based estimates 
coming out of the new empirical industrial organization paradigm over a trans-coming out of the new empirical industrial organization paradigm over a trans-
parent analysis of past experience? At a minimum, we’d expect such a judgment to parent analysis of past experience? At a minimum, we’d expect such a judgment to 
be based on evidence showing that the simulation-based approach delivers reason-be based on evidence showing that the simulation-based approach delivers reason-
ably accurate predictions. As it stands, the proponents of this work seem to favor it ably accurate predictions. As it stands, the proponents of this work seem to favor it 
as a matter of principle.as a matter of principle.

So who can you trust when it comes to antitrust? Direct Hastings (2004)–style So who can you trust when it comes to antitrust? Direct Hastings (2004)–style 
evidence, or structurally derived estimates as in Nevo (2000)? We’d be happy to evidence, or structurally derived estimates as in Nevo (2000)? We’d be happy to 
see more work trying to answer this question by contrasting credible quasi-exper-see more work trying to answer this question by contrasting credible quasi-exper-
imental estimates with results from the new empirical industrial organization imental estimates with results from the new empirical industrial organization 
paradigm. A pioneering effort in this direction is Hausman and Leonard’s (2002) paradigm. A pioneering effort in this direction is Hausman and Leonard’s (2002) 
analysis contrasting “direct” (essentially, differences-in-differences) and “indirect” analysis contrasting “direct” (essentially, differences-in-differences) and “indirect” 
(simulation-based) estimates of the equilibrium price consequences of a new brand (simulation-based) estimates of the equilibrium price consequences of a new brand 
of toilet paper. They evaluate the economic assumptions underlying alternative of toilet paper. They evaluate the economic assumptions underlying alternative 
structural models (for example, Nash–Bertrand competition) according to whether structural models (for example, Nash–Bertrand competition) according to whether 
the resulting structural estimates match the direct estimates. This is reminiscent the resulting structural estimates match the direct estimates. This is reminiscent 
of Lalonde’s (1986) comparison of experimental and nonexperimental training of Lalonde’s (1986) comparison of experimental and nonexperimental training 
estimates, but instead of contrasting model-based estimates with those from estimates, but instead of contrasting model-based estimates with those from 
a randomized trial, the direct estimates are taken to provide a benchmark that a randomized trial, the direct estimates are taken to provide a benchmark that 
turns on fewer assumptions than the structural approach. Hausman and Leonard turns on fewer assumptions than the structural approach. Hausman and Leonard 
conclude that one of their three structural models produces estimates “reasonably conclude that one of their three structural models produces estimates “reasonably 
similar” to the direct estimates. Along the same lines, Peters (2006) looks at the similar” to the direct estimates. Along the same lines, Peters (2006) looks at the 
predictive value of structural analyses of airline mergers, and fi nds that structural predictive value of structural analyses of airline mergers, and fi nds that structural 
simulation methods yield poor predictions of post-merger ticket prices.   Likewise, simulation methods yield poor predictions of post-merger ticket prices.   Likewise, 
Ashenfelter and Hosken (2008) compare differences-in-differences-type estimates Ashenfelter and Hosken (2008) compare differences-in-differences-type estimates 
of the effects of the breakfast cereals merger to those reported by Nevo (2000). of the effects of the breakfast cereals merger to those reported by Nevo (2000). 
Ashenfelter and Hoskens conclude that transparently identifi ed design-based Ashenfelter and Hoskens conclude that transparently identifi ed design-based 
results differ markedly from those produced by the structural approach.results differ markedly from those produced by the structural approach.

A good structural model might tell us something about economic mechanisms A good structural model might tell us something about economic mechanisms 
as well as causal effects. But if the information about mechanisms is to be worth as well as causal effects. But if the information about mechanisms is to be worth 
anything, the structural estimates should line up with those derived under weaker anything, the structural estimates should line up with those derived under weaker 
assumptions. Does the new empirical industrial organization framework generate assumptions. Does the new empirical industrial organization framework generate 
results that match credible design-based results? So far, the results seem mixed at results that match credible design-based results? So far, the results seem mixed at 
best. Of course, the question of which estimates to prefer turns on the quality of best. Of course, the question of which estimates to prefer turns on the quality of 
the relevant quasi-experimental designs and our faith in the ability of a more elabo-the relevant quasi-experimental designs and our faith in the ability of a more elabo-
rate theoretical framework to prop up a weakly identifi ed structural model. We rate theoretical framework to prop up a weakly identifi ed structural model. We 
fi nd the empirical results generated by a good research design more compelling fi nd the empirical results generated by a good research design more compelling 
than the conclusions derived from a good theory, but we also hope to see industrial than the conclusions derived from a good theory, but we also hope to see industrial 
organization move towards stronger and more transparent identifi cation strategies organization move towards stronger and more transparent identifi cation strategies 
in a structural framework.in a structural framework.
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Has the Research Design Pendulum Swung Too Far?Has the Research Design Pendulum Swung Too Far?

The rise of the experimentalist paradigm has provoked a reaction, as revo-The rise of the experimentalist paradigm has provoked a reaction, as revo-
lutions do. The fi rst counterrevolutionary charge raises the question of external lutions do. The fi rst counterrevolutionary charge raises the question of external 
validity—the concern that evidence from a given experimental or quasi-experi-validity—the concern that evidence from a given experimental or quasi-experi-
mental research design has little predictive value beyond the context of the original mental research design has little predictive value beyond the context of the original 
experiment. The second charge is that experimentalists are playing small ball while experiment. The second charge is that experimentalists are playing small ball while 
big questions go unanswered.big questions go unanswered.

External ValidityExternal Validity
A good research design reveals a particular truth, but not necessarily the A good research design reveals a particular truth, but not necessarily the 

whole truth. For example, the Tennessee STAR experiment reduced class sizes whole truth. For example, the Tennessee STAR experiment reduced class sizes 
from roughly 25 to 15. Changes in this range need not reveal the effect of reduc-from roughly 25 to 15. Changes in this range need not reveal the effect of reduc-
tions from 40 students to 30. Similarly, the effects might be unique to the state tions from 40 students to 30. Similarly, the effects might be unique to the state 
of Tennessee. The criticism here—made by a number of authors including of Tennessee. The criticism here—made by a number of authors including 
Heckman (1997); Rosenzweig and Wolpin (2000); Heckman and Urzua (2009); Heckman (1997); Rosenzweig and Wolpin (2000); Heckman and Urzua (2009); 
and Deaton (2009)—is that in the quest for internal validity, design-based studies and Deaton (2009)—is that in the quest for internal validity, design-based studies 
have become narrow or idiosyncratic.have become narrow or idiosyncratic.

Perhaps it’s worth restating an obvious point. Empirical evidence on any given Perhaps it’s worth restating an obvious point. Empirical evidence on any given 
causal effect is always local, derived from a particular time, place, and research causal effect is always local, derived from a particular time, place, and research 
design. Invocation of a superfi cially general structural framework does not make design. Invocation of a superfi cially general structural framework does not make 
the underlying variation or setting more representative. Economic theory often the underlying variation or setting more representative. Economic theory often 
suggests general principles, but extrapolation of causal effects to new settings is suggests general principles, but extrapolation of causal effects to new settings is 
always speculative. Nevertheless, anyone who makes a living out of data analysis always speculative. Nevertheless, anyone who makes a living out of data analysis 
probably believes that heterogeneity is limited enough that the well-understood probably believes that heterogeneity is limited enough that the well-understood 
past can be informative about the future.past can be informative about the future.

A constructive response to the specifi city of a given research design is to look for A constructive response to the specifi city of a given research design is to look for 
more evidence, so that a more general picture begins to emerge. For example, one of more evidence, so that a more general picture begins to emerge. For example, one of 
us (Angrist) has repeatedly estimated the effects of military service, with studies of us (Angrist) has repeatedly estimated the effects of military service, with studies of 
veterans of World War II, the Vietnam era, the fi rst Gulf War, and periods in between. veterans of World War II, the Vietnam era, the fi rst Gulf War, and periods in between. 
The cumulative force of these studies has some claim to external validity—that is, The cumulative force of these studies has some claim to external validity—that is, 
they are helpful in understanding the effects of military service for those who served they are helpful in understanding the effects of military service for those who served 
in any period and therefore, hopefully, for those who might serve in the future. in any period and therefore, hopefully, for those who might serve in the future. 
In general, military service tends to depress civilian earnings, at least for whites, a In general, military service tends to depress civilian earnings, at least for whites, a 
fi nding that is both empirically consistent and theoretically coherent. The primary fi nding that is both empirically consistent and theoretically coherent. The primary 
theoretical channel by which military service affects earnings is human capital, theoretical channel by which military service affects earnings is human capital, 
particularly in the form of lost civilian experience. In a design-based framework, particularly in the form of lost civilian experience. In a design-based framework, 
economic theory helps us understand the picture that emerges from a constellation economic theory helps us understand the picture that emerges from a constellation 
of empirical fi ndings, but does not help us paint the picture. For example, the human of empirical fi ndings, but does not help us paint the picture. For example, the human 
capital story is not integral to the validity of instrumental variable estimates using capital story is not integral to the validity of instrumental variable estimates using 
draft lottery numbers as instruments for Vietnam-era military service (as in Angrist, draft lottery numbers as instruments for Vietnam-era military service (as in Angrist, 
1990). But human capital theory provides a framework that reconciles larger losses 1990). But human capital theory provides a framework that reconciles larger losses 
early in a veteran’s career (when experience profi les tend to be steeper) with losses early in a veteran’s career (when experience profi les tend to be steeper) with losses 
dissipating after many years (as shown in Angrist and Chen, 2008).dissipating after many years (as shown in Angrist and Chen, 2008).
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The process of accumulating empirical evidence is rarely sexy in the unfolding, The process of accumulating empirical evidence is rarely sexy in the unfolding, 
but accumulation is the necessary road along which results become more general but accumulation is the necessary road along which results become more general 
(Imbens, 2009, makes a similar point). The class size literature also illustrates this (Imbens, 2009, makes a similar point). The class size literature also illustrates this 
process at work. Reasonably well-identifi ed studies from a number of advanced coun-process at work. Reasonably well-identifi ed studies from a number of advanced coun-
tries, at different grade levels and subjects, and for class sizes ranging anywhere from tries, at different grade levels and subjects, and for class sizes ranging anywhere from 
a few students to about 40, have produced estimates within a remarkably narrow a few students to about 40, have produced estimates within a remarkably narrow 
band (Krueger, 1999; Angrist and Lavy, 1999; Rivkin, Hanushek, and Kain, 2005; band (Krueger, 1999; Angrist and Lavy, 1999; Rivkin, Hanushek, and Kain, 2005; 
Heinesen, forthcoming). Across these studies, a ten-student reduction in class size Heinesen, forthcoming). Across these studies, a ten-student reduction in class size 
produces about a 0.2 to 0.3 standard deviation increase in individual test scores. produces about a 0.2 to 0.3 standard deviation increase in individual test scores. 
Smaller classes do not always raise test scores, so the assessment of fi ndings should Smaller classes do not always raise test scores, so the assessment of fi ndings should 
be qualifi ed (see, for example, Hoxby, 2000). But the weight of the evidence suggests be qualifi ed (see, for example, Hoxby, 2000). But the weight of the evidence suggests 
that class size reductions generate modest achievement gains, albeit at high cost.that class size reductions generate modest achievement gains, albeit at high cost.

Applied micro fi elds are not unique in accumulating convincing empirical Applied micro fi elds are not unique in accumulating convincing empirical 
fi ndings. The evidence on the power of monetary policy to infl uence the macro fi ndings. The evidence on the power of monetary policy to infl uence the macro 
economy also seems reasonably convincing. As we see it, however, the most persua-economy also seems reasonably convincing. As we see it, however, the most persua-
sive evidence on this point comes not from elaborate structural models, which sive evidence on this point comes not from elaborate structural models, which 
only tell us that monetary policy does or does not affect output depending on the only tell us that monetary policy does or does not affect output depending on the 
model, but from credible empirical research designs, as in some of the work we have model, but from credible empirical research designs, as in some of the work we have 
discussed. Not surprisingly, the channels by which monetary policy affects output discussed. Not surprisingly, the channels by which monetary policy affects output 
are less clear than the fi nding that there is an effect. Questions of why a given effect are less clear than the fi nding that there is an effect. Questions of why a given effect 
appears are usually harder to resolve than the questions of whether it appears or appears are usually harder to resolve than the questions of whether it appears or 
how large it is. Like most researchers, we have an interest in mechanisms as well as how large it is. Like most researchers, we have an interest in mechanisms as well as 
causal effects. But inconclusive or incomplete evidence on mechanisms does not causal effects. But inconclusive or incomplete evidence on mechanisms does not 
void empirical evidence of predictive value. This point has long been understood void empirical evidence of predictive value. This point has long been understood 
in medicine, where clinical evidence of therapeutic effectiveness has for centuries in medicine, where clinical evidence of therapeutic effectiveness has for centuries 
run ahead of the theoretical understanding of disease.run ahead of the theoretical understanding of disease.

Taking the “Econ” out of Econometrics too?Taking the “Econ” out of Econometrics too?
Related to the external validity critique is the claim that the experimentalist Related to the external validity critique is the claim that the experimentalist 

paradigm leads researchers to look for good experiments, regardless of whether the paradigm leads researchers to look for good experiments, regardless of whether the 
questions they address are important. In an engaging account in questions they address are important. In an engaging account in The New Republic, , 
Scheiber (2007) argued that young economists have turned away from important Scheiber (2007) argued that young economists have turned away from important 
questions like poverty, inequality, and unemployment to study behavior on televi-questions like poverty, inequality, and unemployment to study behavior on televi-
sion game shows. Scheiber quotes a number of distinguished academic economists sion game shows. Scheiber quotes a number of distinguished academic economists 
who share this concern. Raj Chetty comments: “People think about the question who share this concern. Raj Chetty comments: “People think about the question 
less than the method . . . so you get weird papers, like sanitation facilities in Native less than the method . . . so you get weird papers, like sanitation facilities in Native 
American reservations.” James Heckman is less diplomatic: “In some quarters of our American reservations.” James Heckman is less diplomatic: “In some quarters of our 
profession, the level of discussion has sunk to the level of a profession, the level of discussion has sunk to the level of a New Yorker article.” article.”

There is no shortage of academic triviality. Still, Scheiber’s (2007) critique There is no shortage of academic triviality. Still, Scheiber’s (2007) critique 
misses the mark because he equates triviality with narrowness of context. For misses the mark because he equates triviality with narrowness of context. For 
example, he picks on DellaVigna and Malmendier (2006), who look at the atten-example, he picks on DellaVigna and Malmendier (2006), who look at the atten-
dance and renewal decisions of health club members, and on Conlin, O’Donoghue, dance and renewal decisions of health club members, and on Conlin, O’Donoghue, 
and Vogelsang (2007), who study catalog sales of winter clothing. Both studies are and Vogelsang (2007), who study catalog sales of winter clothing. Both studies are 
concerned with the behavioral economics notion of present-oriented biases, an concerned with the behavioral economics notion of present-oriented biases, an 
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issue with far-reaching implications for economic policy and theory. The market issue with far-reaching implications for economic policy and theory. The market 
for snow boots seems no less interesting in this context than any other retail for snow boots seems no less interesting in this context than any other retail 
market, and perhaps more so if the data are especially good. We can look to these market, and perhaps more so if the data are especially good. We can look to these 
design-based studies to validate the fi ndings from more descriptive empirical work design-based studies to validate the fi ndings from more descriptive empirical work 
on bigger-ticket items. For example, DellaVigna and Paserman (2005) look for on bigger-ticket items. For example, DellaVigna and Paserman (2005) look for 
present-oriented biases in job search behavior.present-oriented biases in job search behavior.

In the empirical universe, evidence accumulates across settings and study In the empirical universe, evidence accumulates across settings and study 
designs, ultimately producing some kind of consensus. Small ball sometimes wins designs, ultimately producing some kind of consensus. Small ball sometimes wins 
big games. In our fi eld, some of the best research designs used to estimate labor big games. In our fi eld, some of the best research designs used to estimate labor 
supply elasticities exploit natural and experimenter-induced variation in specifi c supply elasticities exploit natural and experimenter-induced variation in specifi c 
labor markets. Oettinger (1999) analyzes stadium vendors’ reaction to wage changes labor markets. Oettinger (1999) analyzes stadium vendors’ reaction to wage changes 
driven by changes in attendance, while Fehr and Goette (2007) study bicycle messen-driven by changes in attendance, while Fehr and Goette (2007) study bicycle messen-
gers in Zurich who, in a controlled experiment, received higher commission rates gers in Zurich who, in a controlled experiment, received higher commission rates 
for one month only. These occupations might seem small and specialized, but they for one month only. These occupations might seem small and specialized, but they 
are no less representative of today’s labor market than the durable manufacturing are no less representative of today’s labor market than the durable manufacturing 
sector that has long been of interest to labor economists.sector that has long been of interest to labor economists.

These examples also serve to refute the claim that design-based empirical These examples also serve to refute the claim that design-based empirical 
work focuses on narrow policy effects and cannot uncover theoretically grounded work focuses on narrow policy effects and cannot uncover theoretically grounded 
structural parameters that many economists care about. Quasi-experimental labor structural parameters that many economists care about. Quasi-experimental labor 
supply studies such as Oettinger (1999) and Fehr and Goette (2007) try to measure supply studies such as Oettinger (1999) and Fehr and Goette (2007) try to measure 
the intertemporal substitution elasticity, a structural parameter that can be derived the intertemporal substitution elasticity, a structural parameter that can be derived 
from a stochastic dynamic framework. Labor demand elasticities, similarly struc-from a stochastic dynamic framework. Labor demand elasticities, similarly struc-
tural, can also be estimated using quasi-experiments, as in Card (1990b), who tural, can also be estimated using quasi-experiments, as in Card (1990b), who 
exploits real wage variation generated by partial indexation of union contracts.exploits real wage variation generated by partial indexation of union contracts.

Quasi-experimental empirical work is also well suited to the task of contrasting Quasi-experimental empirical work is also well suited to the task of contrasting 
competing economic hypotheses. The investigations of present-oriented biases competing economic hypotheses. The investigations of present-oriented biases 
mentioned above focus on key implications of alternative models. In a similarly mentioned above focus on key implications of alternative models. In a similarly 
theory-motivated study, Karlan and Zinman (2009) try to distinguish moral hazard theory-motivated study, Karlan and Zinman (2009) try to distinguish moral hazard 
from adverse selection in the consumer credit market using a clever experimental from adverse selection in the consumer credit market using a clever experimental 
design involving two-stage randomization. First, potential borrowers were offered design involving two-stage randomization. First, potential borrowers were offered 
different interest rates before they applied for loans. Their initial response to varia-different interest rates before they applied for loans. Their initial response to varia-
tion in interest rates is used to gauge adverse selection. Some of the customers who tion in interest rates is used to gauge adverse selection. Some of the customers who 
took loans were then randomly given rates lower than the rates initially offered. This took loans were then randomly given rates lower than the rates initially offered. This 
variation is used to identify moral hazard in a sample where everyone has already variation is used to identify moral hazard in a sample where everyone has already 
committed to borrow. committed to borrow. 

What about grand questions that affect the entire world or the march of history? What about grand questions that affect the entire world or the march of history? 
Nunn (2008) uses a wide range of historical evidence, including sailing distances Nunn (2008) uses a wide range of historical evidence, including sailing distances 
on common trade routes, to estimate the long-term growth effects of the African on common trade routes, to estimate the long-term growth effects of the African 
slave trade. Deschênes and Greenstone (2007) use random year-to-year fl uctuations slave trade. Deschênes and Greenstone (2007) use random year-to-year fl uctuations 
in temperature to estimate effects of climate change on energy use and mortality. in temperature to estimate effects of climate change on energy use and mortality. 
In a study of the effects of foreign aid on growth, Rajan and Subramanian (2008) In a study of the effects of foreign aid on growth, Rajan and Subramanian (2008) 
construct instruments for foreign aid from the historical origins of donor–recipient construct instruments for foreign aid from the historical origins of donor–recipient 
relations. These examples and many more speak eloquently for the wide applicability relations. These examples and many more speak eloquently for the wide applicability 
of a design-based approach. Good research designs complement good questions. At of a design-based approach. Good research designs complement good questions. At 
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the same time, in favoring studies that feature good designs, we accept an incre-the same time, in favoring studies that feature good designs, we accept an incre-
mental approach to empirical knowledge in which well-designed studies get the most mental approach to empirical knowledge in which well-designed studies get the most 
weight while other evidence is treated as more provisional.weight while other evidence is treated as more provisional.

ConclusionConclusion

Leamer (1983) drew an analogy between applied econometrics and classical Leamer (1983) drew an analogy between applied econometrics and classical 
experimentation, but his proposal for the use of extreme bounds analysis to bring experimentation, but his proposal for the use of extreme bounds analysis to bring 
the two closer is not the main reason why empirical work in economics has improved. the two closer is not the main reason why empirical work in economics has improved. 
Improvement has come mostly from better research designs, either by virtue of Improvement has come mostly from better research designs, either by virtue of 
outright experimentation or through the well-founded and careful implementation outright experimentation or through the well-founded and careful implementation 
of quasi-experimental methods. Empirical work in this spirit has produced a cred-of quasi-experimental methods. Empirical work in this spirit has produced a cred-
ibility revolution in the fi elds of labor, public fi nance, and development economics ibility revolution in the fi elds of labor, public fi nance, and development economics 
over the past 20 years. Design-based revolutionaries have notched many successes, over the past 20 years. Design-based revolutionaries have notched many successes, 
putting hard numbers on key parameters of interest to both policymakers and putting hard numbers on key parameters of interest to both policymakers and 
economic theorists. Imagine what could be learned were a similar wave to sweep the economic theorists. Imagine what could be learned were a similar wave to sweep the 
fi elds of macroeconomics and industrial organization.fi elds of macroeconomics and industrial organization.
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